TY - JOUR
T1 - Interplay between Fermi gamma-ray lines and collider searches
AU - Lee, Hyun Min
AU - Park, Myeonghun
AU - Sanz, Verónica
PY - 2013/3
Y1 - 2013/3
N2 - We explore the interplay between lines in the gamma-ray spectrum and LHC searches involving missing energy and photons. As an example, we consider a singlet Dirac fermion dark matter with the mediator for Fermi gamma-ray line at 130 GeV. A new chiral or local U(1) symmetry makes weak-scale dark matter natural and provides the axion or Z′ gauge boson as the mediator connecting between dark matter and electroweak gauge bosons. In these models, the mediator particle can be produced in association with a monophoton at colliders and it produces large missing energy through the decays into a DM pair or ZZ, Zγ with at least one Z decaying into a neutrino pair. We adopt the monophoton searches with large missing energy at the LHC and impose the bounds on the coupling and mass of the mediator field in the models. We show that the parameter space of the Z′ mediation model is already strongly constrained by the LHC 8TeV data, whereas a certain region of the parameter space away from the resonance in axion-like mediator models are bounded. We foresee the monophoton bounds on the Z′ and axion mediation models at the LHC 14 TeV.
AB - We explore the interplay between lines in the gamma-ray spectrum and LHC searches involving missing energy and photons. As an example, we consider a singlet Dirac fermion dark matter with the mediator for Fermi gamma-ray line at 130 GeV. A new chiral or local U(1) symmetry makes weak-scale dark matter natural and provides the axion or Z′ gauge boson as the mediator connecting between dark matter and electroweak gauge bosons. In these models, the mediator particle can be produced in association with a monophoton at colliders and it produces large missing energy through the decays into a DM pair or ZZ, Zγ with at least one Z decaying into a neutrino pair. We adopt the monophoton searches with large missing energy at the LHC and impose the bounds on the coupling and mass of the mediator field in the models. We show that the parameter space of the Z′ mediation model is already strongly constrained by the LHC 8TeV data, whereas a certain region of the parameter space away from the resonance in axion-like mediator models are bounded. We foresee the monophoton bounds on the Z′ and axion mediation models at the LHC 14 TeV.
KW - Anomalies in Field and String Theories
KW - Beyond Standard Model
KW - Cosmology of Theories beyond the SM
UR - http://www.scopus.com/inward/record.url?scp=84876269532&partnerID=8YFLogxK
U2 - 10.1007/JHEP03(2013)052
DO - 10.1007/JHEP03(2013)052
M3 - Article
AN - SCOPUS:84876269532
SN - 1126-6708
VL - 2013
JO - Journal of High Energy Physics
JF - Journal of High Energy Physics
IS - 3
M1 - 52
ER -