TY - JOUR
T1 - Investigating the influence of Ru structures and supports on hydrogenolysis of polyethylene plastic waste
AU - Nguyen-Phu, Huy
AU - Kwon, Taeeun
AU - Kim, Taehyup
AU - Thi Do, Lien
AU - Hyuk Kang, Ki
AU - Ro, Insoo
N1 - Publisher Copyright:
© 2023 Elsevier B.V.
PY - 2023/11/1
Y1 - 2023/11/1
N2 - The Ru dispersion of Ru/SBA-15 was controlled by varying the triethanolamine (TEA)/Ru molar ratios to examine the influence of Ru structures on the hydrogenolysis of low-density polyethylene (LDPE) under moderate conditions (3 MPa hydrogen and 250 °C). Among the different Ru catalysts tested, Ru/SBA-15 with a TEA/Ru molar ratio of 10 (Ru/SBA-15 (10)) exhibited the best activity in LDPE hydrogenolysis. Analyses, including X-ray diffraction (XRD), CO chemisorption, CO Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and High-angle annular dark-field-scanning transmission electron microscopy (HAADF-STEM) showed that the optimal amount of TEA (TEA/Ru = 10) increased the Ru dispersion (92%) and ultimately improved the catalytic activity of LDPE hydrogenolysis. The addition of TEA led to the formation of a [Ru(triethanolamine)2]3+ complex, which facilitated the introduction of Ru species into the confined space in SBA-15. The highly dispersed Ru species confined within SBA-15 in Ru/SBA-15 (10), along with the inherent properties of SBA-15, results in increased hydrogen coverage on the Ru species. This increase in hydrogen coverage leads to a higher liquid yield in LDPE hydrogenolysis compared to Ru/SiO2 (10). Additionally, we successfully employed Ru/SBA-15 (10) in the hydrogenolysis of postconsumer polyolefin waste, including commercial LDPE and LDPE bottles, producing valuable chemicals, such as liquid fuel and wax, in high yields of 65–70%.
AB - The Ru dispersion of Ru/SBA-15 was controlled by varying the triethanolamine (TEA)/Ru molar ratios to examine the influence of Ru structures on the hydrogenolysis of low-density polyethylene (LDPE) under moderate conditions (3 MPa hydrogen and 250 °C). Among the different Ru catalysts tested, Ru/SBA-15 with a TEA/Ru molar ratio of 10 (Ru/SBA-15 (10)) exhibited the best activity in LDPE hydrogenolysis. Analyses, including X-ray diffraction (XRD), CO chemisorption, CO Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and High-angle annular dark-field-scanning transmission electron microscopy (HAADF-STEM) showed that the optimal amount of TEA (TEA/Ru = 10) increased the Ru dispersion (92%) and ultimately improved the catalytic activity of LDPE hydrogenolysis. The addition of TEA led to the formation of a [Ru(triethanolamine)2]3+ complex, which facilitated the introduction of Ru species into the confined space in SBA-15. The highly dispersed Ru species confined within SBA-15 in Ru/SBA-15 (10), along with the inherent properties of SBA-15, results in increased hydrogen coverage on the Ru species. This increase in hydrogen coverage leads to a higher liquid yield in LDPE hydrogenolysis compared to Ru/SiO2 (10). Additionally, we successfully employed Ru/SBA-15 (10) in the hydrogenolysis of postconsumer polyolefin waste, including commercial LDPE and LDPE bottles, producing valuable chemicals, such as liquid fuel and wax, in high yields of 65–70%.
KW - Confinement effect
KW - Hydrogenolysis
KW - Plastic upcycling
KW - Plastic waste
KW - Ru structure
UR - http://www.scopus.com/inward/record.url?scp=85171650345&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2023.146076
DO - 10.1016/j.cej.2023.146076
M3 - Article
AN - SCOPUS:85171650345
SN - 1385-8947
VL - 475
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
M1 - 146076
ER -