Abstract
Despite the essential role of ethylene carbonate (EC) in solid electrolyte interphase (SEI) formation, the high Li+ desolvation barrier and melting point (36 °C) of EC impede lithium-ion battery operation at low temperatures and induce sluggish Li+ reaction kinetics. Here, we demonstrate an EC-free high salt concentration electrolyte (HSCE) composed of lithium bis(fluorosulfonyl)imide salt and tetrahydrofuran solvent with enhanced subzero temperature operation originating from unusually rapid low-temperature Li+ transport. Experimental and theoretical characterizations reveal the dominance of intra-aggregate ion transport in the HSCE that enables efficient low-temperature transport by increasing the exchange rate of solvating counterions relative to that of solvent molecules. This electrolyte also produces a <5 nm thick anion-derived LiF-rich SEI layer with excellent graphite electrode compatibility and electrochemical performance at subzero temperature in half-cells. Full cells based on LiNi0.6Co0.2Mn0.2O2||graphite with tailored HSCE electrolytes outperform state-of-the-art cells comprising conventional EC electrolytes during charge-discharge operation at an extreme temperature of -40 °C. These results demonstrate the opportunities for creating intrinsically robust low-temperature Li+ technology.
Original language | English |
---|---|
Pages (from-to) | 41934-41944 |
Number of pages | 11 |
Journal | ACS Applied Materials and Interfaces |
Volume | 14 |
Issue number | 37 |
DOIs | |
State | Published - 21 Sep 2022 |
Keywords
- high concentration electrolytes
- interfacial chemistries
- ion pairs
- lithium
- low temperatures