TY - JOUR
T1 - Ionic current rectification in soft-matter diodes with liquid-metal electrodes
AU - So, Ju Hee
AU - Koo, Hyung Jun
AU - Dickey, Michael D.
AU - Velev, Orlin D.
PY - 2012/2/8
Y1 - 2012/2/8
N2 - A soft-matter-based diode composed of hydrogel and liquid metal (eutectic gallium indium, EGaIn) is presented. The ability to control the thickness, and thus resistivity, of an oxide skin on the metal enables rectification. First, a simple model system with liquid-metal/electrolyte-solution/Pt interfaces is characterized. The electrically insulating oxide skin on the EGaIn electrode is reduced or oxidized further depending on the direction of the bias, thereby allowing unidirectional ionic current. The forward current of the diode increases as the conductivity of the electrolyte increases, whereas backward current depends on the pH of the medium in contact with the insulating oxide layer on the EGaIn electrode. As a result, the diode shows a higher rectification ratio (defined as the ratio of forward to backward current measured at the same absolute bias) with more conductive electrolyte at neutral pH. Replacement of the liquid electrolyte solution with a hydrogel improves the structural stability of the soft diode. The rectification performance also improves due to the increased ionic conductivity by the gel. Finally, a diode composed entirely of soft materials by replacing the platinum electrode with a second liquid-metal electrode is presented. Contacting each liquid metal with a polyelectrolyte gel featuring different pH values provided asymmetry in the device, which is necessary for rectification. A hydrogel layer infused with a strong basic polyelectrolyte removes the insulating oxide layer, allowing one interface with the EGaIn electrode to be conductive regardless of the direction of bias. Thus, the oxide layer at the other interface rectifies the current.
AB - A soft-matter-based diode composed of hydrogel and liquid metal (eutectic gallium indium, EGaIn) is presented. The ability to control the thickness, and thus resistivity, of an oxide skin on the metal enables rectification. First, a simple model system with liquid-metal/electrolyte-solution/Pt interfaces is characterized. The electrically insulating oxide skin on the EGaIn electrode is reduced or oxidized further depending on the direction of the bias, thereby allowing unidirectional ionic current. The forward current of the diode increases as the conductivity of the electrolyte increases, whereas backward current depends on the pH of the medium in contact with the insulating oxide layer on the EGaIn electrode. As a result, the diode shows a higher rectification ratio (defined as the ratio of forward to backward current measured at the same absolute bias) with more conductive electrolyte at neutral pH. Replacement of the liquid electrolyte solution with a hydrogel improves the structural stability of the soft diode. The rectification performance also improves due to the increased ionic conductivity by the gel. Finally, a diode composed entirely of soft materials by replacing the platinum electrode with a second liquid-metal electrode is presented. Contacting each liquid metal with a polyelectrolyte gel featuring different pH values provided asymmetry in the device, which is necessary for rectification. A hydrogel layer infused with a strong basic polyelectrolyte removes the insulating oxide layer, allowing one interface with the EGaIn electrode to be conductive regardless of the direction of bias. Thus, the oxide layer at the other interface rectifies the current.
KW - electrochemical diodes
KW - hydrogels
KW - ionic current rectification
KW - liquid metal
KW - polyelectrolytes
KW - soft electronics
KW - soft matter
UR - http://www.scopus.com/inward/record.url?scp=84856758970&partnerID=8YFLogxK
U2 - 10.1002/adfm.201101967
DO - 10.1002/adfm.201101967
M3 - Article
AN - SCOPUS:84856758970
SN - 1616-301X
VL - 22
SP - 625
EP - 631
JO - Advanced Functional Materials
JF - Advanced Functional Materials
IS - 3
ER -