Kernel rotation forests for classification

Jaewoong Shim, Seokho Kang, Sungzoon Cho

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

There have been significant research efforts for developing decision tree (DT)-based ensemble methods. Such methods generally construct an ensemble by aggregating a large number of unpruned DTs, thereby yielding good classification accuracy. A recently developed method, rotation forest, is known to achieve better classification accuracy by rotating the dataset using principal component analysis (PCA). This paper describes a new method called kernel rotation forest, which is an extension of rotation forest. The proposed method applies kernel PCA instead of linear PCA to extract non-linear features when training DTs. Experimental results showed that kernel rotation forest outperforms rotation forest as well as other DT-based ensemble methods.

Original languageEnglish
Title of host publicationProceedings - 2020 IEEE International Conference on Big Data and Smart Computing, BigComp 2020
EditorsWookey Lee, Luonan Chen, Yang-Sae Moon, Julien Bourgeois, Mehdi Bennis, Yu-Feng Li, Young-Guk Ha, Hyuk-Yoon Kwon, Alfredo Cuzzocrea
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages406-409
Number of pages4
ISBN (Electronic)9781728160344
DOIs
StatePublished - Feb 2020
Event2020 IEEE International Conference on Big Data and Smart Computing, BigComp 2020 - Busan, Korea, Republic of
Duration: 19 Feb 202022 Feb 2020

Publication series

NameProceedings - 2020 IEEE International Conference on Big Data and Smart Computing, BigComp 2020

Conference

Conference2020 IEEE International Conference on Big Data and Smart Computing, BigComp 2020
Country/TerritoryKorea, Republic of
CityBusan
Period19/02/2022/02/20

Keywords

  • Decision tree
  • Ensemble
  • Kernel rotation forest
  • Rotation forest

Fingerprint

Dive into the research topics of 'Kernel rotation forests for classification'. Together they form a unique fingerprint.

Cite this