Abstract
With the increasing complexity and integration density of System-in-Package (SiP) technologies, the demand for selective electromagnetic interference (EMI) shielding is growing. Conventional sputtering processes, while effective for conformal EMI shielding, lack selectivity and often require additional masking or post-processing steps. In this study, we propose a novel, laser-based approach for the selective removal of EMI shielding layers without physical masking. Numerical simulations were conducted to investigate the thermal and mechanical behavior of multilayer EMI shielding structures under two irradiation modes: full-area and laser scanning. The results showed that the laser scanning method induced higher interfacial shear stress, reaching up to 38.6 MPa, compared to full-area irradiation (12.5 MPa), effectively promoting delamination while maintaining the integrity of the underlying epoxy mold compound (EMC). Experimental validation using a nanosecond pulsed fiber laser confirmed that complete removal of the EMI shielding layer could be achieved at optimized laser powers (~6 W) without damaging the EMC, whereas excessive power (8 W) caused material degradation. The laser scanning speed was 50 mm/s, and the total laser irradiation time of the package was 0.14 s, which was very fast. This study demonstrates the feasibility of a non-contact, damage-free, and selective EMI shielding removal technique, offering a promising solution for next-generation semiconductor packaging.
| Original language | English |
|---|---|
| Article number | 925 |
| Journal | Micromachines |
| Volume | 16 |
| Issue number | 8 |
| DOIs | |
| State | Published - Aug 2025 |
Keywords
- EMI shielding
- laser delamination
- selective removal
- system-in-package
- thermal stress analysis