TY - GEN
T1 - Low-Complexity Hybrid Precoding and Combining Scheme Based on Array Response Vectors
AU - Bahingayi, Eduard Elias
AU - Lee, Kyungchun
N1 - Publisher Copyright:
© 2020 IEEE.
PY - 2020/5
Y1 - 2020/5
N2 - The hybrid precoding and combining algorithms for mmWave massive multiple-input multiple-output (MIMO) systems must consider the trade-off between the complexity and performance of the system. Unfortunately, because of the unit-norm constraint imposed by the use of phase shifters, the optimization of the radio frequency (RF) precoder and combiner becomes a non-convex problem. As a consequence, the algorithm for hybrid precoding and combining design often incurs high complexity. This paper proposes a low-complexity algorithm for hybrid precoding and combining design based on array response vectors. The proposed algorithm considers a decoupled optimization scheme between the RF and baseband domains for the spectral efficiency-maximization problem. In the RF domain, we propose an incremental successive selection method to find a subset of array response vectors from a dictionary, which forms the RF precoding/combining matrices. For the digital domain, we employ singular-value decomposition (SVD) of the low-dimensional effective channel matrix to generate the digital baseband precoder and combiner. Through numerical simulation, we show that the proposed algorithm achieves nearoptimal performance with 89.9 % - 99.4% complexity reduction compared to the conventional state-of-the-art hybrid precoding and combining algorithm.
AB - The hybrid precoding and combining algorithms for mmWave massive multiple-input multiple-output (MIMO) systems must consider the trade-off between the complexity and performance of the system. Unfortunately, because of the unit-norm constraint imposed by the use of phase shifters, the optimization of the radio frequency (RF) precoder and combiner becomes a non-convex problem. As a consequence, the algorithm for hybrid precoding and combining design often incurs high complexity. This paper proposes a low-complexity algorithm for hybrid precoding and combining design based on array response vectors. The proposed algorithm considers a decoupled optimization scheme between the RF and baseband domains for the spectral efficiency-maximization problem. In the RF domain, we propose an incremental successive selection method to find a subset of array response vectors from a dictionary, which forms the RF precoding/combining matrices. For the digital domain, we employ singular-value decomposition (SVD) of the low-dimensional effective channel matrix to generate the digital baseband precoder and combiner. Through numerical simulation, we show that the proposed algorithm achieves nearoptimal performance with 89.9 % - 99.4% complexity reduction compared to the conventional state-of-the-art hybrid precoding and combining algorithm.
KW - array response vectors
KW - combining
KW - dictionary
KW - massive MIMO
KW - Millimeter wave
KW - multiple-input multiple-output (MIMO)
KW - precoding
KW - subset selection
UR - http://www.scopus.com/inward/record.url?scp=85087282423&partnerID=8YFLogxK
U2 - 10.1109/WCNC45663.2020.9120599
DO - 10.1109/WCNC45663.2020.9120599
M3 - Conference contribution
AN - SCOPUS:85087282423
T3 - IEEE Wireless Communications and Networking Conference, WCNC
BT - 2020 IEEE Wireless Communications and Networking Conference, WCNC 2020 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2020 IEEE Wireless Communications and Networking Conference, WCNC 2020
Y2 - 25 May 2020 through 28 May 2020
ER -