TY - JOUR
T1 - Low-Temperature Growth of Indium Oxide Thin Film by Plasma-Enhanced Atomic Layer Deposition Using Liquid Dimethyl(N-ethoxy-2,2-dimethylpropanamido)indium for High-Mobility Thin Film Transistor Application
AU - Kim, Hyo Yeon
AU - Jung, Eun Ae
AU - Mun, Geumbi
AU - Agbenyeke, Raphael E.
AU - Park, Bo Keun
AU - Park, Jin Seong
AU - Son, Seung Uk
AU - Jeon, Dong Ju
AU - Park, Sang Hee Ko
AU - Chung, Taek Mo
AU - Han, Jeong Hwan
N1 - Publisher Copyright:
© 2016 American Chemical Society.
PY - 2016/10/12
Y1 - 2016/10/12
N2 - Low-temperature growth of In2O3 films was demonstrated at 70-250 °C by plasma-enhanced atomic layer deposition (PEALD) using a newly synthesized liquid indium precursor, dimethyl(N-ethoxy-2,2-dimethylcarboxylicpropanamide)indium (Me2In(EDPA)), and O2 plasma for application to high-mobility thin film transistors. Self-limiting In2O3 PEALD growth was observed with a saturated growth rate of approximately 0.053 nm/cycle in an ALD temperature window of 90-180 °C. As-deposited In2O3 films showed negligible residual impurity, film densities as high as 6.64-7.16 g/cm3, smooth surface morphology with a root-mean-square (RMS) roughness of approximately 0.2 nm, and semiconducting level carrier concentrations of 1017-1018 cm-3. Ultrathin In2O3 channel-based thin film transistors (TFTs) were fabricated in a coplanar bottom gate structure, and their electrical performances were evaluated. Because of the excellent quality of In2O3 films, superior electronic switching performances were achieved with high field effect mobilities of 28-30 and 16-19 cm2/V·s in the linear and saturation regimes, respectively. Furthermore, the fabricated TFTs showed excellent gate control characteristics in terms of subthreshold swing, hysteresis, and on/off current ratio. The low-temperature PEALD process for high-quality In2O3 films using the developed novel In precursor can be widely used in a variety of applications such as microelectronics, displays, energy devices, and sensors, especially at temperatures compatible with organic substrates.
AB - Low-temperature growth of In2O3 films was demonstrated at 70-250 °C by plasma-enhanced atomic layer deposition (PEALD) using a newly synthesized liquid indium precursor, dimethyl(N-ethoxy-2,2-dimethylcarboxylicpropanamide)indium (Me2In(EDPA)), and O2 plasma for application to high-mobility thin film transistors. Self-limiting In2O3 PEALD growth was observed with a saturated growth rate of approximately 0.053 nm/cycle in an ALD temperature window of 90-180 °C. As-deposited In2O3 films showed negligible residual impurity, film densities as high as 6.64-7.16 g/cm3, smooth surface morphology with a root-mean-square (RMS) roughness of approximately 0.2 nm, and semiconducting level carrier concentrations of 1017-1018 cm-3. Ultrathin In2O3 channel-based thin film transistors (TFTs) were fabricated in a coplanar bottom gate structure, and their electrical performances were evaluated. Because of the excellent quality of In2O3 films, superior electronic switching performances were achieved with high field effect mobilities of 28-30 and 16-19 cm2/V·s in the linear and saturation regimes, respectively. Furthermore, the fabricated TFTs showed excellent gate control characteristics in terms of subthreshold swing, hysteresis, and on/off current ratio. The low-temperature PEALD process for high-quality In2O3 films using the developed novel In precursor can be widely used in a variety of applications such as microelectronics, displays, energy devices, and sensors, especially at temperatures compatible with organic substrates.
KW - high-mobility thin film transistor
KW - indium oxide
KW - low-temperature plasma-enhanced atomic layer deposition
KW - novel indium precursor
UR - http://www.scopus.com/inward/record.url?scp=84991583794&partnerID=8YFLogxK
U2 - 10.1021/acsami.6b07332
DO - 10.1021/acsami.6b07332
M3 - Article
AN - SCOPUS:84991583794
SN - 1944-8244
VL - 8
SP - 26924
EP - 26931
JO - ACS Applied Materials and Interfaces
JF - ACS Applied Materials and Interfaces
IS - 40
ER -