Material modeling of pmma film for hot embossing process

Dongwon Yun, Jong Bong Kim

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

This study provides an analysis of the hot embossing process with poly methyl methacrylate (PMMA) film. The hot embossing process engraves a fine pattern on a flexible film using a stamp, applied heat and pressure. As the quality of the embossing pattern varies according to various process variables, the mechanism of making the embossed shape is complicated and difficult to analyze. Therefore, analysis takes much time and cost because it usually has to perform a lot of experiments to find an appropriate process condition. In this paper, the hot embossing process was analyzed using a computational analysis method to quickly find the optimal process. To do this, we analyzed the embossing phenomenon using the finite element method (FEM) and arbitrary Lagrangian–Eulerian (ALE) re-mesh technique. For this purpose, we developed a constitutive model considering the strain, strain rate, temperature-dependent stress and softening of the flexible film. Work hardening, strain softening, and temperature-softening behavior of PMMA materials were well described by the proposed method. The developed constitutive model were applied in the embossing analysis via user-subroutine. This proposed method allowed a precise analysis of the phenomenon of film change during the hot embossing process.

Original languageEnglish
Article number3398
JournalPolymers
Volume13
Issue number19
DOIs
StatePublished - 1 Oct 2021

Keywords

  • Constitutive model
  • Embossing
  • Finite element method
  • Poly methyl methacrylate
  • Polymer

Fingerprint

Dive into the research topics of 'Material modeling of pmma film for hot embossing process'. Together they form a unique fingerprint.

Cite this