Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37

Katherine A. Henzler Wildman, Dong Kuk Lee, A. Ramamoorthy

Research output: Contribution to journalArticlepeer-review

459 Scopus citations

Abstract

LL-37 is an amphipathic, α-helical, antimicrobial peptide. 15N chemical shift and 15N dipolarshift spectroscopy of site-specifically labeled LL-37 in oriented lipid bilayers indicate that the amphipathic helix is oriented parallel to the surface of the bilayer. This surface orientation is maintained in both anionic and zwitterionic bilayers and at different temperatures and peptide concentrations, ruling out a barrel-stave mechanism for bilayer disruption by LL-37. In contrast, electrostatic factors, the type of lipid, and the presence of cholesterol do affect the extent to which LL-37 perturbs the lipids in the bilayer as observed with 31P NMR. The 31P spectra also show that micelles or other small, rapidly tumbling membrane fragments are not formed in the presence of LL-37, excluding a detergent-like mechanism. LL-37 does increase the lamellar to inverted hexagonal phase transition temperature of both PE model lipid systems and Escherichia coli lipids, demonstrating that it induces positive curvature strain in these environments. These results support a toroidal pore mechanism of lipid bilayer disruption by LL-37.

Original languageEnglish
Pages (from-to)6545-6558
Number of pages14
JournalBiochemistry
Volume42
Issue number21
DOIs
StatePublished - 3 Jun 2003

Fingerprint

Dive into the research topics of 'Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37'. Together they form a unique fingerprint.

Cite this