TY - JOUR
T1 - Microbial granulation for lactic acid production
AU - Kim, Dong Hoon
AU - Lee, Mo Kwon
AU - Hwang, Yuhoon
AU - Im, Wan Taek
AU - Yun, Yeo Myeong
AU - Park, Chul
AU - Kim, Mi Sun
N1 - Publisher Copyright:
© 2015 Wiley Periodicals, Inc.
PY - 2016/1/1
Y1 - 2016/1/1
N2 - This work investigated the formation of microbial granules to boost the productivity of lactic acid (LA). The flocculated form of LA-producing microbial consortium, dominated by Lactobacillus sp. (91.5% of total sequence), was initially obtained in a continuous stirred-tank reactor (CSTR), which was fed with 2% glucose and operated at a hydraulic retention time (HRT) of 12 h and pH 5.0±0.1 under a thermophilic condition (50°C). The mixed liquor in the CSTR was then transferred to an up-flow anaerobic sludge blanket reactor (UASB). The fermentation performance and granulation process were monitored with a gradual decrease of HRT from 8.0 to 0.17 h, corresponding to an increase in the substrate loading from 60 to 2,880 g glucose L-1d-1. As the operation continued, the accumulation of biomass in the UASB was clearly observed, which changed from flocculent to granular form with decrease in HRT. Up to the HRT decrease to 0.5 h, the LA concentration was maintained at 19-20 g L-1 with over 90% of substrate removal efficiency. However, further decrease of HRT resulted in a decrease of LA concentration with increase in residual glucose. Nevertheless, the volumetric LA productivity continuously increased, reaching 67 g L-fermenter-1h-1 at HRT 0.17 h. The size of LA-producing granules and hydrophobicity gradually increased with decrease in HRT, reaching 6.0 mm and 60%, respectively. These biogranules were also found to have high settling velocities and low porosities, ranging 2.69-4.73 cms-1 and 0.39-0.92, respectively.
AB - This work investigated the formation of microbial granules to boost the productivity of lactic acid (LA). The flocculated form of LA-producing microbial consortium, dominated by Lactobacillus sp. (91.5% of total sequence), was initially obtained in a continuous stirred-tank reactor (CSTR), which was fed with 2% glucose and operated at a hydraulic retention time (HRT) of 12 h and pH 5.0±0.1 under a thermophilic condition (50°C). The mixed liquor in the CSTR was then transferred to an up-flow anaerobic sludge blanket reactor (UASB). The fermentation performance and granulation process were monitored with a gradual decrease of HRT from 8.0 to 0.17 h, corresponding to an increase in the substrate loading from 60 to 2,880 g glucose L-1d-1. As the operation continued, the accumulation of biomass in the UASB was clearly observed, which changed from flocculent to granular form with decrease in HRT. Up to the HRT decrease to 0.5 h, the LA concentration was maintained at 19-20 g L-1 with over 90% of substrate removal efficiency. However, further decrease of HRT resulted in a decrease of LA concentration with increase in residual glucose. Nevertheless, the volumetric LA productivity continuously increased, reaching 67 g L-fermenter-1h-1 at HRT 0.17 h. The size of LA-producing granules and hydrophobicity gradually increased with decrease in HRT, reaching 6.0 mm and 60%, respectively. These biogranules were also found to have high settling velocities and low porosities, ranging 2.69-4.73 cms-1 and 0.39-0.92, respectively.
KW - Lactic acid
KW - Microbial granules
KW - Pyrosequencing
KW - Settling experiments
KW - Up-flow anaerobic sludge blanket reactor
KW - Volumetric productivity
UR - https://www.scopus.com/pages/publications/84948085787
U2 - 10.1002/bit.25540
DO - 10.1002/bit.25540
M3 - Article
C2 - 25925200
AN - SCOPUS:84948085787
SN - 0006-3592
VL - 113
SP - 101
EP - 111
JO - Biotechnology and Bioengineering
JF - Biotechnology and Bioengineering
IS - 1
ER -