TY - JOUR
T1 - Modeling Flash Breakup for a Direct-Injection Spark-Ignition Gasoline Engine
AU - Kim, Taehoon
AU - Park, Sungwook
N1 - Publisher Copyright:
Copyright © 2017 SAE International.
PY - 2017/3/28
Y1 - 2017/3/28
N2 - An important challenge for modeling Direct-Injection Spark-Ignition (DISI) gasoline engines is understanding flash boiling spray. Flash boiling occurs when the ambient pressure is lower than the vapor pressure of the fuel and affects the spray structure and mixture formation process inside an engine. Gasoline is a multi-component fuel and the effects of each component on flash boiling are difficult to estimate. As a preliminary study to investigate the mixture formation process of the flash boiling spray, a single-component fuel was used to validate the flash breakup model. The flash breakup model was applied to KIVA 3V release2. Bubble growth in the drop was modelled by the Rayleigh-Plesset equation. When bubbles grow to satisfy the breakup criterion, breakup occurs and induces a smaller SMD for flash breakup cases. To investigate flash breakup modeling, simulations without the flash breakup model and with the flash breakup model was compared. Also, the modeling parameters were adjusted to obtain better results in order to more accurately reflect the experimental results.
AB - An important challenge for modeling Direct-Injection Spark-Ignition (DISI) gasoline engines is understanding flash boiling spray. Flash boiling occurs when the ambient pressure is lower than the vapor pressure of the fuel and affects the spray structure and mixture formation process inside an engine. Gasoline is a multi-component fuel and the effects of each component on flash boiling are difficult to estimate. As a preliminary study to investigate the mixture formation process of the flash boiling spray, a single-component fuel was used to validate the flash breakup model. The flash breakup model was applied to KIVA 3V release2. Bubble growth in the drop was modelled by the Rayleigh-Plesset equation. When bubbles grow to satisfy the breakup criterion, breakup occurs and induces a smaller SMD for flash breakup cases. To investigate flash breakup modeling, simulations without the flash breakup model and with the flash breakup model was compared. Also, the modeling parameters were adjusted to obtain better results in order to more accurately reflect the experimental results.
UR - http://www.scopus.com/inward/record.url?scp=85019043611&partnerID=8YFLogxK
U2 - 10.4271/2017-01-0548
DO - 10.4271/2017-01-0548
M3 - Conference article
AN - SCOPUS:85019043611
SN - 0148-7191
VL - 2017-March
JO - SAE Technical Papers
JF - SAE Technical Papers
IS - March
T2 - SAE World Congress Experience, WCX 2017
Y2 - 4 April 2017 through 6 April 2017
ER -