TY - JOUR
T1 - Monolithic 3D micromixer with an impeller for glass microfluidic systems
AU - Kim, Sungil
AU - Kim, Jeongtae
AU - Joung, Yeun Ho
AU - Ahn, Sanghoon
AU - Park, Changkyoo
AU - Choi, Jiyeon
AU - Koo, Chiwan
N1 - Publisher Copyright:
© The Royal Society of Chemistry.
PY - 2020/12/7
Y1 - 2020/12/7
N2 - The performance of micromixers, namely their mixing efficiency and throughput, is a critical component in increasing the overall efficiency of microfluidic systems (e.g., lab-on-a-chip and μ-TAS). Most previously reported high-performance micromixers use active elements with some external power to induce turbulence, or contain long and complex fluidic channels with obstacles to increase diffusion. In this paper, we introduce a new type of 3D impeller micromixer built within a single fused silica substrate. The proposed device is composed of microchannels with three inlets and a tank, with a mixing impeller passively rotated by axial flow. The passive micromixer is directly fabricated inside a glass plate using a selective laser-induced etching technique. The mixing tank, with its rotating shaft and 3D pitched blade impeller, exists within a micro-cavity with a volume of only 0.28 mm3. A mixing efficiency of 99% is achieved in mixing experiments involving three dye colours over flow rates ranging from 1.5-30 mL min-1, with the same flow rates also applied to a sodium hydroxide-based bromothymol blue indicator and a hydrochloric acid chemical solution. To verify the reliable performance of the proposed device, we compare the mixing index with a general self-circulation-type chamber mixer to demonstrate the improved mixing efficiency achieved by rotating the impeller. No cracking or breakage of the device is observed under high inner pressures or when the maximum flow rate is applied to the mixer. The proposed microfluidic system based on a compact built-in 3D micromixer with an impeller opens the door to robust, highly efficient, and high-throughput glass-based platforms for micro-centrifuges, cell sorters, micro-turbines, and micro-pumps.
AB - The performance of micromixers, namely their mixing efficiency and throughput, is a critical component in increasing the overall efficiency of microfluidic systems (e.g., lab-on-a-chip and μ-TAS). Most previously reported high-performance micromixers use active elements with some external power to induce turbulence, or contain long and complex fluidic channels with obstacles to increase diffusion. In this paper, we introduce a new type of 3D impeller micromixer built within a single fused silica substrate. The proposed device is composed of microchannels with three inlets and a tank, with a mixing impeller passively rotated by axial flow. The passive micromixer is directly fabricated inside a glass plate using a selective laser-induced etching technique. The mixing tank, with its rotating shaft and 3D pitched blade impeller, exists within a micro-cavity with a volume of only 0.28 mm3. A mixing efficiency of 99% is achieved in mixing experiments involving three dye colours over flow rates ranging from 1.5-30 mL min-1, with the same flow rates also applied to a sodium hydroxide-based bromothymol blue indicator and a hydrochloric acid chemical solution. To verify the reliable performance of the proposed device, we compare the mixing index with a general self-circulation-type chamber mixer to demonstrate the improved mixing efficiency achieved by rotating the impeller. No cracking or breakage of the device is observed under high inner pressures or when the maximum flow rate is applied to the mixer. The proposed microfluidic system based on a compact built-in 3D micromixer with an impeller opens the door to robust, highly efficient, and high-throughput glass-based platforms for micro-centrifuges, cell sorters, micro-turbines, and micro-pumps.
UR - http://www.scopus.com/inward/record.url?scp=85096890116&partnerID=8YFLogxK
U2 - 10.1039/d0lc00823k
DO - 10.1039/d0lc00823k
M3 - Article
C2 - 33108430
AN - SCOPUS:85096890116
SN - 1473-0197
VL - 20
SP - 4474
EP - 4485
JO - Lab on a Chip
JF - Lab on a Chip
IS - 23
ER -