Abstract
We prove that the set GP of all nonzero generalized pentagonal numbers is an additive uniqueness set; if a multiplicative function f satisfies the equation f(a+b)=f(a)+f(b), for all a,b∈GP, then f is the identity function.
Original language | English |
---|---|
Pages (from-to) | 125-128 |
Number of pages | 4 |
Journal | Comptes Rendus Mathematique |
Volume | 356 |
Issue number | 2 |
DOIs | |
State | Published - Feb 2018 |