Abstract
We prove that the set P (H, resp.) of all positive pentagonal (hexagonal, resp.) numbers is an additive uniqueness set for the collection of multiplicative functions; if a multiplicative function f satisfies the equation f(a+b)=f(a)+f(b)for all a, b∈ P (H, resp.), then f is the identity function.
Original language | English |
---|---|
Pages (from-to) | 601-621 |
Number of pages | 21 |
Journal | Aequationes Mathematicae |
Volume | 95 |
Issue number | 4 |
DOIs | |
State | Published - Aug 2021 |
Keywords
- Additive uniqueness set
- Functional equation
- Hexagonal numbers
- Multiplicative function
- Pentagonal numbers
- Polygonal numbers