Multiplicative functions additive on polygonal numbers

Byungchan Kim, Ji Young Kim, Chong Gyu Lee, Poo Sung Park

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

We prove that the set P (H, resp.) of all positive pentagonal (hexagonal, resp.) numbers is an additive uniqueness set for the collection of multiplicative functions; if a multiplicative function f satisfies the equation f(a+b)=f(a)+f(b)for all a, b∈ P (H, resp.), then f is the identity function.

Original languageEnglish
Pages (from-to)601-621
Number of pages21
JournalAequationes Mathematicae
Volume95
Issue number4
DOIs
StatePublished - Aug 2021

Keywords

  • Additive uniqueness set
  • Functional equation
  • Hexagonal numbers
  • Multiplicative function
  • Pentagonal numbers
  • Polygonal numbers

Fingerprint

Dive into the research topics of 'Multiplicative functions additive on polygonal numbers'. Together they form a unique fingerprint.

Cite this