Abstract
We prove that the set P (H, resp.) of all positive pentagonal (hexagonal, resp.) numbers is an additive uniqueness set for the collection of multiplicative functions; if a multiplicative function f satisfies the equation f(a+b)=f(a)+f(b)for all a, b∈ P (H, resp.), then f is the identity function.
| Original language | English |
|---|---|
| Pages (from-to) | 601-621 |
| Number of pages | 21 |
| Journal | Aequationes Mathematicae |
| Volume | 95 |
| Issue number | 4 |
| DOIs | |
| State | Published - Aug 2021 |
Keywords
- Additive uniqueness set
- Functional equation
- Hexagonal numbers
- Multiplicative function
- Pentagonal numbers
- Polygonal numbers