Natural biomaterials for sustainable flexible neuromorphic devices

Yanfei Zhao, Seungbeom Lee, Tingyu Long, Hea Lim Park, Tae Woo Lee

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Neuromorphic electronics use neural models in hardware to emulate brain-like behavior, and provide power-efficient, extremely compact, and massively-parallel processing, so they are ideal candidates for next-generation information-processing units. However, traditional rigid neuromorphic devices are limited by their unavoidable mechanical and geometrical mismatch with human tissues or organs. At the same time, the rapid development of these electronic devices has generated a large amount of electronic waste, thereby causing severe ecological problems. Natural biomaterials have mechanical properties compatible with biological tissues, and are environmentally benign, ultra-thin, and lightweight, so use of these materials can address these limitations and be used to create next-generation sustainable flexible neuromorphic electronics. Here, we explore the advantages of natural biomaterials in simulating synaptic behavior of sustainable neuromorphic devices. We present the flexibility, biocompatibility, and biodegradability of these neuromorphic devices, and consider the potential applicability of these properties in wearable and implantable bioelectronics. Finally, we consider the challenges of device fabrication and neuromorphic system integration by natural biomaterials, then suggest future research directions.

Original languageEnglish
Article number122861
JournalBiomaterials
Volume314
DOIs
StatePublished - Mar 2025

Keywords

  • Biocompatibility
  • Biodegradability
  • Flexibility
  • Natural biomaterials
  • Neuromorphic electronics

Fingerprint

Dive into the research topics of 'Natural biomaterials for sustainable flexible neuromorphic devices'. Together they form a unique fingerprint.

Cite this