TY - JOUR
T1 - Neural dynamics of olfactory perception
T2 - Low- And high-frequency modulations of local field potential spectra in mice revealed by an oddball stimulus
AU - Kum, Jeungeun
AU - Kim, Jin Won
AU - Braubach, Oliver
AU - Ha, Jong Gyun
AU - Cho, Hyung Ju
AU - Kim, Chang Hoon
AU - Han, Hio Been
AU - Choi, Jee Hyun
AU - Yoon, Joo Heon
N1 - Publisher Copyright:
Copyright © 2019 Kum, Kim, Braubach, Ha, Cho, Kim, Han, Choi and Yoon.
PY - 2019
Y1 - 2019
N2 - Recent brain connectome studies have evidenced distinct and overlapping brain regions involved in processing olfactory perception. However, neural correlates of hypo- or anosmia in olfactory disorder patients are poorly known. Furthermore, the bottom-up and top-down processing of olfactory perception have not been well-documented, resulting in difficulty in locating the disease foci of olfactory disorder patients. The primary aim of this study is to characterize the bottom-up process of the neural dynamics across peripheral and central brain regions in anesthetized mice. We particularly focused on the neural oscillations of local field potential (LFP) in olfactory epithelium (OE), olfactory blub (OB), prefrontal cortex (PFC), and hippocampus (HC) during an olfactory oddball paradigm in urethane anesthetized mice. Odorant presentations evoked neural oscillations across slow and fast frequency bands including delta (1–4 Hz), theta (6–10 Hz), beta (15–30 Hz), low gamma (30–50 Hz), and high gamma (70–100 Hz) in both peripheral and central nervous systems, and the increases were more prominent in the infrequently presented odorant. During 5 s odorant exposures, the oscillatory responses in power were persistent in OE, OB, and PFC, whereas neural oscillations of HC increased only for short time at stimulus onset. These oscillatory responses in power were insignificant in both peripheral and central regions of the ZnSO4-treated anosmia model. These results suggest that olfactory stimulation induce LFP oscillations both in the peripheral and central nervous systems and suggest the possibility of linkage of LFP oscillations in the brain to the oscillations in the peripheral olfactory system.
AB - Recent brain connectome studies have evidenced distinct and overlapping brain regions involved in processing olfactory perception. However, neural correlates of hypo- or anosmia in olfactory disorder patients are poorly known. Furthermore, the bottom-up and top-down processing of olfactory perception have not been well-documented, resulting in difficulty in locating the disease foci of olfactory disorder patients. The primary aim of this study is to characterize the bottom-up process of the neural dynamics across peripheral and central brain regions in anesthetized mice. We particularly focused on the neural oscillations of local field potential (LFP) in olfactory epithelium (OE), olfactory blub (OB), prefrontal cortex (PFC), and hippocampus (HC) during an olfactory oddball paradigm in urethane anesthetized mice. Odorant presentations evoked neural oscillations across slow and fast frequency bands including delta (1–4 Hz), theta (6–10 Hz), beta (15–30 Hz), low gamma (30–50 Hz), and high gamma (70–100 Hz) in both peripheral and central nervous systems, and the increases were more prominent in the infrequently presented odorant. During 5 s odorant exposures, the oscillatory responses in power were persistent in OE, OB, and PFC, whereas neural oscillations of HC increased only for short time at stimulus onset. These oscillatory responses in power were insignificant in both peripheral and central regions of the ZnSO4-treated anosmia model. These results suggest that olfactory stimulation induce LFP oscillations both in the peripheral and central nervous systems and suggest the possibility of linkage of LFP oscillations in the brain to the oscillations in the peripheral olfactory system.
KW - Anterior cingulate cortex
KW - Anterior olfactory
KW - Attention
KW - Local field potential
KW - Neural oscillations
KW - Oddball paradigm
KW - Olfaction
KW - Primary olfactory cortex
UR - https://www.scopus.com/pages/publications/85068552718
U2 - 10.3389/fnins.2019.00478
DO - 10.3389/fnins.2019.00478
M3 - Article
AN - SCOPUS:85068552718
SN - 1662-4548
VL - 13
JO - Frontiers in Neuroscience
JF - Frontiers in Neuroscience
IS - MAY
M1 - 478
ER -