Abstract
Nb-doped TiO2(NTO) coated NiCrAl alloy foam for hydrogen production is prepared using ultrasonic spray pyrolysis deposition(USPD) method. To optimize the size and distribution of NTO particles based on good physical and chemical stability, we synthesize particles by adjusting the weight ratio of the Nb precursor solution(5 wt%, 10 wt% and 15 wt%). The morphological, chemical bonding, and structural properties of the NTO coated NiCrAl alloy foam are investigated by X-ray diffraction(XRD), X-ray photo-electron spectroscopy(XPS), and Field-Emission Scanning Electron Microscopy(FESEM). As a result, the samples of controlled Nb weight ratio exhibit a common diffraction pattern at ~25.3o, corresponding to the(101) plane, and have chemical bonding(O-Nb=O) at 534 eV. The NTO particles with the optimum weight ratio of N (10 wt%) show a uniform distribution with a size of ~18.2-21.0 nm. In addition, they exhibit the highest corrosion resistance even in the electrochemical stability estimation. As a result, the introduction of NTO coated NiCrAl alloy foam by USPD improves the chemical stability of the NiCrAl alloy foam by protecting the direct electrochemical reaction between the foam and the electrolyte. Thus, the optimized NTO coating can be proposed for excellent protection of NiCrAl alloy foam for hydrocarbon-based steam methane reforming(SMR).
Translated title of the contribution | The effect of Nb-doped TiO2 coating for improving stability of NiCrAl alloy foam |
---|---|
Original language | Korean |
Pages (from-to) | 328-335 |
Number of pages | 8 |
Journal | Korean Journal of Materials Research |
Volume | 29 |
Issue number | 5 |
DOIs | |
State | Published - 1 May 2019 |
Keywords
- Nb-doped TiO
- NiCrAl alloy foam
- Steam methane reforming
- Surface coating
- Ultrasonic spray pyrolysis deposition