TY - JOUR
T1 - Nonheme manganese(III) complexes for various olefin epoxidation
T2 - Synthesis, characterization and catalytic activity
AU - Lee, Sojeong
AU - Park, Soyoung
AU - Lee, Myoung Mi
AU - Lee, Jiyoung
AU - Kim, Cheal
N1 - Publisher Copyright:
© 2021 Elsevier B.V.
PY - 2021/5/24
Y1 - 2021/5/24
N2 - Three mononuclear imine-based non-heme manganese(III) complexes with tetradentate ligands which have two deprotonated phenolate moieties, ([(X2saloph)Mn(OAc)(H2O)], 1a for X = Cl, 1b for X = H, and 1c for X = CH3, saloph = N,N-o-phenylenebis(salicylidenaminato)), were synthesized and characterized by 1H NMR, 13C NMR, ESI-Mass and elemental analysis. MnIII complexes catalysed efficiently various olefin epoxidation reactions with meta-chloroperbenzoic acid (MCPBA) under the mild condition. MnIII complexes 1a and 1c with the electron-withdrawing group -Cl and electron-donating group –CH3 showed little substituent effect on the epoxidation reactions. Product analysis, Hammett study and competition experiments with cis- and trans-2-octene suggested that MnIV = O, MnV = O, and MnIII-OOC(O)R species might be key oxidants in the epoxidation reaction under this catalytic system. In addition, the use of PPAA as a mechanistic probe demonstrated that Mn-acylperoxo intermediate (MnIII-OOC(O)R) 2 generated from the reaction of peracid with manganese complexes underwent both the heterolysis and the homolysis to produce MnV = O (3) or MnIV = O species (4). Moreover, the MnIII-OOC(O)R 2 species could react directly with the easy-to-oxidize substrate to give epoxide, whereas the species 2 might not be competent to the difficult-to-oxidize substrate for the epoxidation reaction.
AB - Three mononuclear imine-based non-heme manganese(III) complexes with tetradentate ligands which have two deprotonated phenolate moieties, ([(X2saloph)Mn(OAc)(H2O)], 1a for X = Cl, 1b for X = H, and 1c for X = CH3, saloph = N,N-o-phenylenebis(salicylidenaminato)), were synthesized and characterized by 1H NMR, 13C NMR, ESI-Mass and elemental analysis. MnIII complexes catalysed efficiently various olefin epoxidation reactions with meta-chloroperbenzoic acid (MCPBA) under the mild condition. MnIII complexes 1a and 1c with the electron-withdrawing group -Cl and electron-donating group –CH3 showed little substituent effect on the epoxidation reactions. Product analysis, Hammett study and competition experiments with cis- and trans-2-octene suggested that MnIV = O, MnV = O, and MnIII-OOC(O)R species might be key oxidants in the epoxidation reaction under this catalytic system. In addition, the use of PPAA as a mechanistic probe demonstrated that Mn-acylperoxo intermediate (MnIII-OOC(O)R) 2 generated from the reaction of peracid with manganese complexes underwent both the heterolysis and the homolysis to produce MnV = O (3) or MnIV = O species (4). Moreover, the MnIII-OOC(O)R 2 species could react directly with the easy-to-oxidize substrate to give epoxide, whereas the species 2 might not be competent to the difficult-to-oxidize substrate for the epoxidation reaction.
KW - Manganese complexes
KW - Mn=O
KW - Non-heme
KW - Olefin epoxidation
KW - Saloph
UR - http://www.scopus.com/inward/record.url?scp=85102049858&partnerID=8YFLogxK
U2 - 10.1016/j.ica.2021.120306
DO - 10.1016/j.ica.2021.120306
M3 - Article
AN - SCOPUS:85102049858
SN - 0020-1693
VL - 520
JO - Inorganica Chimica Acta
JF - Inorganica Chimica Acta
M1 - 120306
ER -