Abstract
Current reinforcement learning (RL) often suffers when solving a challenging exploration problem where the desired outcomes or high rewards are rarely observed. Even though curriculum RL, a framework that solves complex tasks by proposing a sequence of surrogate tasks, shows reasonable results, most of the previous works still have difficulty in proposing curriculum due to the absence of a mechanism for obtaining calibrated guidance to the desired outcome state without any prior domain knowledge. To alleviate it, we propose an uncertainty & temporal distance-aware curriculum goal generation method for the outcome-directed RL via solving a bipartite matching problem. It could not only provide precisely calibrated guidance of the curriculum to the desired outcome states but also bring much better sample efficiency and geometry-agnostic curriculum goal proposal capability compared to previous curriculum RL methods. We demonstrate that our algorithm significantly outperforms these prior methods in a variety of challenging navigation tasks and robotic manipulation tasks in a quantitative and qualitative way.
Original language | English |
---|---|
State | Published - 2023 |
Event | 11th International Conference on Learning Representations, ICLR 2023 - Kigali, Rwanda Duration: 1 May 2023 → 5 May 2023 |
Conference
Conference | 11th International Conference on Learning Representations, ICLR 2023 |
---|---|
Country/Territory | Rwanda |
City | Kigali |
Period | 1/05/23 → 5/05/23 |