Particle swarm optimization based load model parameter identification

Young Gon Kim, Hwachang Song, Hong Rae Kim, Byongjun Lee

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

8 Scopus citations

Abstract

This paper presents a method for estimating the parameters of dynamic models for induction motor dominating loads. Using particle swarm optimization, the method finds the adequate set of parameters that best fit the sampling data from the measurement for a period of time, minimizing the error of the outputs, active and reactive power demands and satisfying the steady-state error criterion.

Original languageEnglish
Title of host publicationIEEE PES General Meeting, PES 2010
DOIs
StatePublished - 2010
EventIEEE PES General Meeting, PES 2010 - Minneapolis, MN, United States
Duration: 25 Jul 201029 Jul 2010

Publication series

NameIEEE PES General Meeting, PES 2010

Conference

ConferenceIEEE PES General Meeting, PES 2010
Country/TerritoryUnited States
CityMinneapolis, MN
Period25/07/1029/07/10

Keywords

  • Dynamic load model
  • Parameter estimation
  • Particle swarm optimization
  • System identification

Fingerprint

Dive into the research topics of 'Particle swarm optimization based load model parameter identification'. Together they form a unique fingerprint.

Cite this