PGT: Proposal-guided object tracking

Han Ul Kim, Chang Su Kim

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We propose a robust visual tracking system, which refines initial estimates of a base tracker by employing object proposal techniques. First, we decompose the base tracker into three building blocks: Representation method, appearance model, and model update strategy. We then design each building block by adopting and improving ideas from recent successful trackers. Second, we propose the proposal-guided tracking (PGT) algorithm. Given proposals generated by an edge-based object proposal technique, we select only the proposals that can improve the result of the base tracker using several cues. Then, we discriminate target proposals from non-target ones, based on the nearest neighbor classification using the target and background models. Finally, we replace the result of the base tracker with the best target proposal. Experimental results demonstrate that proposed PGT algorithm provides excellent results on a visual tracking benchmark.

Original languageEnglish
Title of host publicationProceedings - 9th Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1762-1767
Number of pages6
ISBN (Electronic)9781538615423
DOIs
StatePublished - 2 Jul 2017
Event9th Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2017 - Kuala Lumpur, Malaysia
Duration: 12 Dec 201715 Dec 2017

Publication series

NameProceedings - 9th Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2017
Volume2018-February

Conference

Conference9th Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2017
Country/TerritoryMalaysia
CityKuala Lumpur
Period12/12/1715/12/17

Fingerprint

Dive into the research topics of 'PGT: Proposal-guided object tracking'. Together they form a unique fingerprint.

Cite this