TY - JOUR
T1 - Porous clay heterostructure with alginate encapsulation for toluene removal
AU - Son, Yeongkyun
AU - Kim, Tae Hyun
AU - Kim, Daekeun
AU - Hwang, Yuhoon
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/2
Y1 - 2021/2
N2 - A volatile organic compound adsorbent based on a porous clay heterostructure (PCH) with alginate biopolymer was successfully prepared. From N2 adsorption–desorption analysis, the specific surface area, pore volume, and pore size of bentonite were dramatically increased after introducing the porous structure. Following complexation with alginate (Alg-PCH), the pore volume and pore size were not significantly affected by pore structure. The thermal stability of Alg-PCH shows enhanced thermal stability compared to alginate and alginate beads. The morphology layered structure of Alg-PCH was carried out by transmission electron microscopy (TEM), suggesting the disorder and re-order of the c-axis layer stacking by porous structure and complexation with alginate, respectively, which was well-matched with X-ray diffraction results. To optimize the preparation of Alg-PCH, various reaction conditions (alginate, CaCl2 concentration, bead size, and weight ratio between alginate and PCH) were utilized. According to the toluene adsorption–desorption experiments, the preparation conditions for Alg-PCH were selected as a 2 mm extrusion tip, 0.5% of alginate, and 2% of CaCl2 solution with a 1:50 alginate:PCH weight ratio. Additionally, it shows 61.63 mg/g adsorption capacity with around 49% desorption efficacy under atmospheric temperature and pressure.
AB - A volatile organic compound adsorbent based on a porous clay heterostructure (PCH) with alginate biopolymer was successfully prepared. From N2 adsorption–desorption analysis, the specific surface area, pore volume, and pore size of bentonite were dramatically increased after introducing the porous structure. Following complexation with alginate (Alg-PCH), the pore volume and pore size were not significantly affected by pore structure. The thermal stability of Alg-PCH shows enhanced thermal stability compared to alginate and alginate beads. The morphology layered structure of Alg-PCH was carried out by transmission electron microscopy (TEM), suggesting the disorder and re-order of the c-axis layer stacking by porous structure and complexation with alginate, respectively, which was well-matched with X-ray diffraction results. To optimize the preparation of Alg-PCH, various reaction conditions (alginate, CaCl2 concentration, bead size, and weight ratio between alginate and PCH) were utilized. According to the toluene adsorption–desorption experiments, the preparation conditions for Alg-PCH were selected as a 2 mm extrusion tip, 0.5% of alginate, and 2% of CaCl2 solution with a 1:50 alginate:PCH weight ratio. Additionally, it shows 61.63 mg/g adsorption capacity with around 49% desorption efficacy under atmospheric temperature and pressure.
KW - Adsorption– desorption
KW - Bentonite
KW - Porous clay heterostructure
KW - Toluene
KW - Volatile organic carbon
UR - http://www.scopus.com/inward/record.url?scp=85100243936&partnerID=8YFLogxK
U2 - 10.3390/nano11020388
DO - 10.3390/nano11020388
M3 - Article
AN - SCOPUS:85100243936
SN - 2079-4991
VL - 11
SP - 1
EP - 14
JO - Nanomaterials
JF - Nanomaterials
IS - 2
M1 - 388
ER -