TY - GEN
T1 - Predictions of tensile strain capacity for strain-based pipelines with a circumferential and internal surface flaw
AU - Jang, Youn Young
AU - Kang, Ju Yeon
AU - Huh, Nam Su
AU - Kim, Ik Joong
AU - Kim, Cheol Man
AU - Kim, Young Pyo
N1 - Publisher Copyright:
Copyright © 2019 ASME.
PY - 2019
Y1 - 2019
N2 - Strain-based design assessment (SBDA) has been known for suitable assessment concept for pipelines subjected to displacement-controlled load and high plastic deformation rather than conventional stress-based design assessment. Tensile strain capacity (TSC) has been used for one of important factors to indicate limit state in strain-based design, so that it is main concern to predict accurate TSC to ensure the structural safety and integrity of pipelines. For the pipeline containing a flaw, especially a girth weld flaw, TSC based on fracture mechanics can be determined. Crack-tip opening displacement (CTOD) has been widely used for typical elastic-plastic fracture parameter, representing crack-driving force and crack-resistance curve, which are required to assess unstable crack propagation. The one of the main principles of crack assessment is that the definitions of crack-driving force and crack resistance curve should be coincident. However, there exist two kinds of the definitions of CTOD, which are based on 90ºand original crack-tip concept, and these have been not unified in practical regions until now. Moreover, it is reported that the deviations of crack-resistance curve can occur in the same specimen and experiment, caused by the different definitions of CTOD. Therefore, CTOD solutions based on each of different definitions of CTOD should be highly required since inaccurate TSC would be assessed when using not the identical definition of that. In the present study, CTOD solutions of pipelines with a circumferential and internal surface flaw are suggested by using two kinds of definitions of CTOD based on 90ºand original crack-tip concept. For this purpose, FE analyses were systematically carried out considering various pipe geometries and material properties. And single-edge notched tension (SENT) specimen was used for representing resistance curve of API X70/X65 material. Moreover, the effect of the choice of each CTOD definitions on TSC was investigated through crack-driving force diagram (CDFD) assessment.
AB - Strain-based design assessment (SBDA) has been known for suitable assessment concept for pipelines subjected to displacement-controlled load and high plastic deformation rather than conventional stress-based design assessment. Tensile strain capacity (TSC) has been used for one of important factors to indicate limit state in strain-based design, so that it is main concern to predict accurate TSC to ensure the structural safety and integrity of pipelines. For the pipeline containing a flaw, especially a girth weld flaw, TSC based on fracture mechanics can be determined. Crack-tip opening displacement (CTOD) has been widely used for typical elastic-plastic fracture parameter, representing crack-driving force and crack-resistance curve, which are required to assess unstable crack propagation. The one of the main principles of crack assessment is that the definitions of crack-driving force and crack resistance curve should be coincident. However, there exist two kinds of the definitions of CTOD, which are based on 90ºand original crack-tip concept, and these have been not unified in practical regions until now. Moreover, it is reported that the deviations of crack-resistance curve can occur in the same specimen and experiment, caused by the different definitions of CTOD. Therefore, CTOD solutions based on each of different definitions of CTOD should be highly required since inaccurate TSC would be assessed when using not the identical definition of that. In the present study, CTOD solutions of pipelines with a circumferential and internal surface flaw are suggested by using two kinds of definitions of CTOD based on 90ºand original crack-tip concept. For this purpose, FE analyses were systematically carried out considering various pipe geometries and material properties. And single-edge notched tension (SENT) specimen was used for representing resistance curve of API X70/X65 material. Moreover, the effect of the choice of each CTOD definitions on TSC was investigated through crack-driving force diagram (CDFD) assessment.
UR - http://www.scopus.com/inward/record.url?scp=85075843376&partnerID=8YFLogxK
U2 - 10.1115/OMAE2019-96480
DO - 10.1115/OMAE2019-96480
M3 - Conference contribution
AN - SCOPUS:85075843376
T3 - Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE
BT - Structures, Safety, and Reliability
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2019
Y2 - 9 June 2019 through 14 June 2019
ER -