TY - JOUR
T1 - Protein transfer learning improves identification of heat shock protein families
AU - Min, Seonwoo
AU - Kim, Hyun Gi
AU - Lee, Byunghan
AU - Yoon, Sungroh
N1 - Publisher Copyright:
Copyright: © 2021 Min et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2021/5
Y1 - 2021/5
N2 - Heat shock proteins (HSPs) play a pivotal role as molecular chaperones against unfavorable conditions. Although HSPs are of great importance, their computational identification remains a significant challenge. Previous studies have two major limitations. First, they relied heavily on amino acid composition features, which inevitably limited their prediction performance. Second, their prediction performance was overestimated because of the independent two-stage evaluations and train-test data redundancy. To overcome these limitations, we introduce two novel deep learning algorithms: (1) time-efficient DeepHSP and (2) high-performance DeeperHSP. We propose a convolutional neural network (CNN)-based DeepHSP that classifies both non-HSPs and six HSP families simultaneously. It outperforms state-of-the-art algorithms, despite taking 14–15 times less time for both training and inference. We further improve the performance of DeepHSP by taking advantage of protein transfer learning. While DeepHSP is trained on raw protein sequences, DeeperHSP is trained on top of pre-trained protein representations. Therefore, DeeperHSP remarkably outperforms state-of-the-art algorithms increasing F1 scores in both cross-validation and independent test experiments by 20% and 10%, respectively. We envision that the proposed algorithms can provide a proteome-wide prediction of HSPs and help in various downstream analyses for pathology and clinical research.
AB - Heat shock proteins (HSPs) play a pivotal role as molecular chaperones against unfavorable conditions. Although HSPs are of great importance, their computational identification remains a significant challenge. Previous studies have two major limitations. First, they relied heavily on amino acid composition features, which inevitably limited their prediction performance. Second, their prediction performance was overestimated because of the independent two-stage evaluations and train-test data redundancy. To overcome these limitations, we introduce two novel deep learning algorithms: (1) time-efficient DeepHSP and (2) high-performance DeeperHSP. We propose a convolutional neural network (CNN)-based DeepHSP that classifies both non-HSPs and six HSP families simultaneously. It outperforms state-of-the-art algorithms, despite taking 14–15 times less time for both training and inference. We further improve the performance of DeepHSP by taking advantage of protein transfer learning. While DeepHSP is trained on raw protein sequences, DeeperHSP is trained on top of pre-trained protein representations. Therefore, DeeperHSP remarkably outperforms state-of-the-art algorithms increasing F1 scores in both cross-validation and independent test experiments by 20% and 10%, respectively. We envision that the proposed algorithms can provide a proteome-wide prediction of HSPs and help in various downstream analyses for pathology and clinical research.
UR - https://www.scopus.com/pages/publications/85106379449
U2 - 10.1371/journal.pone.0251865
DO - 10.1371/journal.pone.0251865
M3 - Article
C2 - 34003870
AN - SCOPUS:85106379449
SN - 1932-6203
VL - 16
JO - PLoS ONE
JF - PLoS ONE
IS - 5 May
M1 - e0251865
ER -