TY - JOUR
T1 - Rationalization of in-situ synthesized plasmonic paper for colorimetric detection of glucose in ocular fluids
AU - Kim, Hyeok Jung
AU - Hyung, Jiwoo
AU - Noh, Hyeran
N1 - Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020/9
Y1 - 2020/9
N2 - Tear glucose is an intriguing biofluid that includes potential biomarkers. While many sensors have emerged nowadays, there is still demand for advanced sensors with nonenzymatic, simple, cost-effective sensing mechanism. Herein, we present a paper-based colorimetric assay by utilizing a gold nanoparticle formation. Experimental characterization substantiated a mechanism in this in situ reduction. Scanning electron microscopy, UV-visible spectrometry, etc. were involved in the scrutiny. As a result, we reached for the rationale whereas the particle formation can be utilized for a glucose sensing using tears. This paper-based detection was insusceptible to physiological tear matrix, i.e., chloride ion effect, false-positive error and synergistic effect by antioxidants. In addition, we evaluated its analytical performance in an artificial tear assay. Of the obtained a linear regressions, the concentration range corresponded to the physiological or pathologic reference range. In addition, within the low-concentration range, a high correlation was resulted 0.965. Furthermore, we investigated statistical validation by employing the Bland–Altman plot. In the end sections of this paper, we denoted its ready-to-use merits by simplicity—as well as the further application of our plasmonic paper.
AB - Tear glucose is an intriguing biofluid that includes potential biomarkers. While many sensors have emerged nowadays, there is still demand for advanced sensors with nonenzymatic, simple, cost-effective sensing mechanism. Herein, we present a paper-based colorimetric assay by utilizing a gold nanoparticle formation. Experimental characterization substantiated a mechanism in this in situ reduction. Scanning electron microscopy, UV-visible spectrometry, etc. were involved in the scrutiny. As a result, we reached for the rationale whereas the particle formation can be utilized for a glucose sensing using tears. This paper-based detection was insusceptible to physiological tear matrix, i.e., chloride ion effect, false-positive error and synergistic effect by antioxidants. In addition, we evaluated its analytical performance in an artificial tear assay. Of the obtained a linear regressions, the concentration range corresponded to the physiological or pathologic reference range. In addition, within the low-concentration range, a high correlation was resulted 0.965. Furthermore, we investigated statistical validation by employing the Bland–Altman plot. In the end sections of this paper, we denoted its ready-to-use merits by simplicity—as well as the further application of our plasmonic paper.
KW - Glucose
KW - Gold nanoparticles
KW - Nanocomposite
KW - Paper-based
KW - Plasmonic
KW - Tear
UR - http://www.scopus.com/inward/record.url?scp=85113733855&partnerID=8YFLogxK
U2 - 10.3390/CHEMOSENSORS8030081
DO - 10.3390/CHEMOSENSORS8030081
M3 - Article
AN - SCOPUS:85113733855
SN - 2227-9040
VL - 8
JO - Chemosensors
JF - Chemosensors
IS - 3
M1 - 81
ER -