TY - JOUR
T1 - Recovery of cleaning agents from Clean-In-Place (CIP) wastewater using nanofiltration (NF) and direct contact membrane distillation (DCMD)
AU - Kim, Woo Ju
AU - Huellemeier, Holly
AU - Heldman, Dennis R.
N1 - Publisher Copyright:
© 2023 Elsevier Ltd
PY - 2023/5
Y1 - 2023/5
N2 - Increasing concerns about freshwater sources necessitate the management of wastewater, such as the wastewater generated from Clean-in-Place (CIP) operations. In this investigation, a membrane system composed of nanofiltration (NF) and direct contact membrane distillation (DCMD) was proposed to manage model dairy CIP wastewater that contained NaOH as an alkaline cleaning agent. During the NF step, prefiltration by a 4 kDa membrane or a 4 kDa membrane followed by a 200 Da membrane (4 kDa/200 Da) was used to remove the whey protein and lactose. With these two membranes in series of NF, the protein concentration was reduced by 92.4% and the lactose content was reduced to a non-detectable level when compared to the model CIP wastewater. Before concentrating the permeates from NF steps, three DCMD membranes (FR, Solupor, and ST) with different characteristics were evaluated to manage the NF permeates from 4 kDa or 200 Da NF. An increase in the feed temperature from 40 °C to 60 °C resulted in an increase in the water flux during DCMD operation, except for FR. In addition, it was found that ST generated the highest water flux when compared to the other membranes. Using ST and a feed temperature of 60 °C, the permeates from 4 kDa or 4 kDa/200 Da were continuously concentrated for 7 h with DCMD. During this concentration, there was no significant decline in flux. The cleaning effectiveness of the cleaning agent (NaOH) recovered by NF and DCMD was compared with a fresh cleaning solution using quartz crystal microbalance with dissipation (QCM-D). It was found that the cleaning agents recovered by 4 kDa/200 Da NF presented a statistically identical cleaning rate compared to fresh NaOH. This research highlights the potential of NF and DCMD to regenerate alkaline cleaning agents, while reclaiming water from dairy CIP wastewater.
AB - Increasing concerns about freshwater sources necessitate the management of wastewater, such as the wastewater generated from Clean-in-Place (CIP) operations. In this investigation, a membrane system composed of nanofiltration (NF) and direct contact membrane distillation (DCMD) was proposed to manage model dairy CIP wastewater that contained NaOH as an alkaline cleaning agent. During the NF step, prefiltration by a 4 kDa membrane or a 4 kDa membrane followed by a 200 Da membrane (4 kDa/200 Da) was used to remove the whey protein and lactose. With these two membranes in series of NF, the protein concentration was reduced by 92.4% and the lactose content was reduced to a non-detectable level when compared to the model CIP wastewater. Before concentrating the permeates from NF steps, three DCMD membranes (FR, Solupor, and ST) with different characteristics were evaluated to manage the NF permeates from 4 kDa or 200 Da NF. An increase in the feed temperature from 40 °C to 60 °C resulted in an increase in the water flux during DCMD operation, except for FR. In addition, it was found that ST generated the highest water flux when compared to the other membranes. Using ST and a feed temperature of 60 °C, the permeates from 4 kDa or 4 kDa/200 Da were continuously concentrated for 7 h with DCMD. During this concentration, there was no significant decline in flux. The cleaning effectiveness of the cleaning agent (NaOH) recovered by NF and DCMD was compared with a fresh cleaning solution using quartz crystal microbalance with dissipation (QCM-D). It was found that the cleaning agents recovered by 4 kDa/200 Da NF presented a statistically identical cleaning rate compared to fresh NaOH. This research highlights the potential of NF and DCMD to regenerate alkaline cleaning agents, while reclaiming water from dairy CIP wastewater.
KW - Clean-in-Place
KW - Cleaning agents
KW - Direct contact membrane distillation
KW - Nanofiltration
KW - Reclamation of water
KW - Wastewater
KW - Water recovery
UR - http://www.scopus.com/inward/record.url?scp=85151059213&partnerID=8YFLogxK
U2 - 10.1016/j.foodres.2023.112724
DO - 10.1016/j.foodres.2023.112724
M3 - Article
C2 - 37087280
AN - SCOPUS:85151059213
SN - 0963-9969
VL - 167
JO - Food Research International
JF - Food Research International
M1 - 112724
ER -