Removal of methyl isobutyl ketone from contaminated air by trickle-bed air biofilter

Zhangli Cai, Daekeun Kim, George A. Sorial

Research output: Contribution to journalArticlepeer-review

36 Scopus citations

Abstract

A laboratory-scale trickle-bed air biofilter was evaluated for the removal of methyl isobutyl ketone (MIBK) from a waste gas stream. Six-millimeter (6 mm) Celite pellets (R-635) were used as the biological attachment medium. Effects of MIBK volumetric loading rates on removal efficiency, biofilter reacclimation, biomass growth, and removal kinetics were studied under three different operating conditions, namely, backwashing and two intermittent periods (off chemical - no MIBK input; and off flow-no flow input). Backwashing of the biofilter once a week with full-medium fluidization removed the excess biomass and attained stable long-term performance with over 99% removal efficiency for loading rates less than 3.26 kg chemical oxygen demand (COD)/ m3 day. The two intermittent periods could also sustain high removal efficiency for loading rates up to 1.09 kg COD/m3 day without any backwashing. The recovery time increased with an increase in loading rates. Furthermore, the intermittent operations required a longer time to recover than backwashing. The pseudo-first-order removal rate constant decreased with an increase in volumetric loading rate. The removal kinetics showed an apparent dependency on the experimental operating conditions. Journal of Environmental Engineering

Original languageEnglish
Pages (from-to)1322-1329
Number of pages8
JournalJournal of Environmental Engineering
Volume131
Issue number9
DOIs
StatePublished - Sep 2005

Keywords

  • Backwashing
  • Biodegradation
  • Biofilm
  • Biological treatment
  • Biomass
  • Fixed-bed operations
  • Gas
  • Volatile organic compounds

Fingerprint

Dive into the research topics of 'Removal of methyl isobutyl ketone from contaminated air by trickle-bed air biofilter'. Together they form a unique fingerprint.

Cite this