Robust Time Series Recovery and Classification Using Test-Time Noise Simulator Networks

Eun Som Jeon, Suhas Lohit, Rushil Anirudh, Pavan Turaga

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Time-series are commonly susceptible to various types of corruption due to sensor-level changes and defects which can result in missing samples, sensor and quantization noise, unknown calibration, unknown phase shifts etc. These corruptions cannot be easily corrected as the noise model may be unknown at the time of deployment. This also results in the inability to employ pre-Trained classifiers, trained on (clean) source data. In this paper, we present a general framework and models for time-series that can make use of (unlabeled) test samples to estimate the noise model-entirely at test time. To this end, we use a coupled decoder model and an additional neural network which acts as a learned noise model simulator. We show that the framework is able to "clean"the data so as to match the source training data statistics and the cleaned data can be directly used with a pre-Trained classifier for robust predictions. We perform empirical studies on diverse application domains with different types of sensors, clearly demonstrating the effectiveness and generality of this method.

Original languageEnglish
Title of host publicationICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing, Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728163277
DOIs
StatePublished - 2023
Event48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023 - Rhodes Island, Greece
Duration: 4 Jun 202310 Jun 2023

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2023-June
ISSN (Print)1520-6149

Conference

Conference48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023
Country/TerritoryGreece
CityRhodes Island
Period4/06/2310/06/23

Keywords

  • DNN
  • Signal recovery
  • time series

Fingerprint

Dive into the research topics of 'Robust Time Series Recovery and Classification Using Test-Time Noise Simulator Networks'. Together they form a unique fingerprint.

Cite this