TY - JOUR
T1 - Role of borate functionalized carbon nanotube catalyst for the performance improvement of vanadium redox flow battery
AU - Chung, Yongjin
AU - Noh, Chanho
AU - Kwon, Yongchai
N1 - Publisher Copyright:
© 2019
PY - 2019/10/31
Y1 - 2019/10/31
N2 - A borate-group functionalized carbon nanotube (Borate-CNT) catalyst is developed to enhance the performance and long term durability of the vanadium redox flow battery (VRFB). To prepare for the –Borate-CNT catalyst, carboxylic acid groups (COOHs) adopted onto acidified CNT (CA-CNT) are simply co-treated with sodium hydroxide (NaOH) and boric acid (H3BO3). As a result, the COOHs are transformed into borate groups. The transformation is verified by XPS analysis, showing the increase in oxygen content and the creation of boron-oxygen bonds. The active sites and catalytic activity of Borate-CNT are increased more than those of the catalysts formed by the single treatment of NaOH and CA-NCT or H3BO3 and CA-CNT. This is due to the increase of active sites by the formation of oxygen abundant borate groups and the different electronegativity between the boron and oxygen elements promotes the attraction and subsequent reaction o f vanadium ions. The voltage and energy efficiencies (VE and EE) of the VRFB using Borate-CNT catalyst are better than those of VRFBs using no catalyst or CA-CNT catalyst – even at 200 mA cm−2 – and the efficiencies of Borate-CNT VRFB are well maintained until 300 cycles, whereas the efficiencies of the no catalyst VRFB are considerably decreased (17% and 16% decreases of the initial values in VE and EE). In addition, Borate-CNT shows the effect of protection by suppressing the chemical aging of carbon felt from toxic acidic electrolyte.
AB - A borate-group functionalized carbon nanotube (Borate-CNT) catalyst is developed to enhance the performance and long term durability of the vanadium redox flow battery (VRFB). To prepare for the –Borate-CNT catalyst, carboxylic acid groups (COOHs) adopted onto acidified CNT (CA-CNT) are simply co-treated with sodium hydroxide (NaOH) and boric acid (H3BO3). As a result, the COOHs are transformed into borate groups. The transformation is verified by XPS analysis, showing the increase in oxygen content and the creation of boron-oxygen bonds. The active sites and catalytic activity of Borate-CNT are increased more than those of the catalysts formed by the single treatment of NaOH and CA-NCT or H3BO3 and CA-CNT. This is due to the increase of active sites by the formation of oxygen abundant borate groups and the different electronegativity between the boron and oxygen elements promotes the attraction and subsequent reaction o f vanadium ions. The voltage and energy efficiencies (VE and EE) of the VRFB using Borate-CNT catalyst are better than those of VRFBs using no catalyst or CA-CNT catalyst – even at 200 mA cm−2 – and the efficiencies of Borate-CNT VRFB are well maintained until 300 cycles, whereas the efficiencies of the no catalyst VRFB are considerably decreased (17% and 16% decreases of the initial values in VE and EE). In addition, Borate-CNT shows the effect of protection by suppressing the chemical aging of carbon felt from toxic acidic electrolyte.
KW - Borate group functionalized carbon nanotube
KW - Boron-oxygen bonds
KW - Co-treatment of NaOH and HBO
KW - Electronegativity
KW - Vanadium redox flow battery
UR - https://www.scopus.com/pages/publications/85071143824
U2 - 10.1016/j.jpowsour.2019.227063
DO - 10.1016/j.jpowsour.2019.227063
M3 - Article
AN - SCOPUS:85071143824
SN - 0378-7753
VL - 438
JO - Journal of Power Sources
JF - Journal of Power Sources
M1 - 227063
ER -