TY - JOUR
T1 - Selective visual staining of polyurethane microplastics by novel colorimetric and near-infrared (NIR) fluorescent dye
T2 - Application to environmental water and natural soil samples
AU - Choi, Boeun
AU - Gil, Dongkyun
AU - Lee, Jae Jun
AU - Kim, Cheal
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2024/6/5
Y1 - 2024/6/5
N2 - Microplastics can cause environmental pollution and ecosystem destruction as well as human health problems. Among the types of microplastics, polyurethane (PU) is particularly resistant to heat and difficult to decompose, causing disposal problems, and is evaluated as one of the most hazardous polymers. We present a novel colorimetric and near-infrared (NIR) fluorescence dye, (E)-N-(2-((4-(diphenylamino)benzylidene)amino)phenyl)− 7-nitrobenzo[c][1,2,5]oxadiazol-4-amine (DPNA), designed for selective visual PU microplastic staining. The intramolecular charge transfer (ICT) properties of DPNA are demonstrated through density functional theory (DFT) calculations along with solvatochromic shift. DPNA exhibits red color and red fluorescence emission, showing promising potential as a staining dye. To achieve selective PU microplastic staining, we establish an optimized experimental procedure with the staining dye DPNA by evaluating the staining efficiency under different staining solvent compositions and staining times. DPNA can distinguish PU by both red fluorescence signal and red coloration among different types of microplastics. In addition, DPNA well stain fresh PUs with diverse sizes and at various pH range of 5–9, and the aged PUs can also be dyed as effectively as the fresh PU. Most importantly, DPNA selectively stains PU among 11 types of microplastics and 5 types of natural particles in environmental water and soil with and without any pre-treatments. The adsorption mechanism of DPNA on PU microplastic is demonstrated through field emission scanning electron microscopes (FE-SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and non-covalent interaction (NCI)-reduced density gradient (RDG) analyses, and proposed that intermolecular hydrogen bonding has a significant effect.
AB - Microplastics can cause environmental pollution and ecosystem destruction as well as human health problems. Among the types of microplastics, polyurethane (PU) is particularly resistant to heat and difficult to decompose, causing disposal problems, and is evaluated as one of the most hazardous polymers. We present a novel colorimetric and near-infrared (NIR) fluorescence dye, (E)-N-(2-((4-(diphenylamino)benzylidene)amino)phenyl)− 7-nitrobenzo[c][1,2,5]oxadiazol-4-amine (DPNA), designed for selective visual PU microplastic staining. The intramolecular charge transfer (ICT) properties of DPNA are demonstrated through density functional theory (DFT) calculations along with solvatochromic shift. DPNA exhibits red color and red fluorescence emission, showing promising potential as a staining dye. To achieve selective PU microplastic staining, we establish an optimized experimental procedure with the staining dye DPNA by evaluating the staining efficiency under different staining solvent compositions and staining times. DPNA can distinguish PU by both red fluorescence signal and red coloration among different types of microplastics. In addition, DPNA well stain fresh PUs with diverse sizes and at various pH range of 5–9, and the aged PUs can also be dyed as effectively as the fresh PU. Most importantly, DPNA selectively stains PU among 11 types of microplastics and 5 types of natural particles in environmental water and soil with and without any pre-treatments. The adsorption mechanism of DPNA on PU microplastic is demonstrated through field emission scanning electron microscopes (FE-SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and non-covalent interaction (NCI)-reduced density gradient (RDG) analyses, and proposed that intermolecular hydrogen bonding has a significant effect.
KW - Colorimetric
KW - Fluorescent microscopy
KW - Fluorescent tagging
KW - Microplastic
KW - Polyurethane (PU)
KW - Staining dyes
UR - https://www.scopus.com/pages/publications/85190720665
U2 - 10.1016/j.jhazmat.2024.134332
DO - 10.1016/j.jhazmat.2024.134332
M3 - Article
C2 - 38643578
AN - SCOPUS:85190720665
SN - 0304-3894
VL - 471
JO - Journal of Hazardous Materials
JF - Journal of Hazardous Materials
M1 - 134332
ER -