TY - GEN
T1 - Semi-Supervised Learning for Low-Dose CT Image Restoration with Hierarchical Deep Generative Adversarial Network (HD-GAN)
AU - Choi, Kihwan
AU - Vania, Malinda
AU - Kim, Sungwon
N1 - Publisher Copyright:
© 2019 IEEE.
PY - 2019/7
Y1 - 2019/7
N2 - In the absence of duplicate high-dose CT data, it is challenging to restore high-quality images based on deep learning with only low-dose CT (LDCT) data. When different reconstruction algorithms and settings are adopted to prepare high-quality images, LDCT datasets for deep learning can be unpaired. To address this problem, we propose hierarchical deep generative adversarial networks (HD-GANs) for semi-supervised learning with the unpaired datasets. We first cluster each patient's CT images into multiple categories, and then collect the images in the same categories across different patients to build an imageset for denoising. Each imageset is fed into a generative adversarial network that consists of a denoising network and a following classification network. The denoising network efficiently reuses feature maps from the lower layers for end-to-end learning with full-size images. The classifier is trained to distinguish between the denoised images and the high-quality images. Evaluated with a clinical LDCT dataset, the proposed semi-supervised learning approach efficiently reduces the noise level of LDCT images without loss of information, thereby addressing the major shortcomings of IR such as computation time and anatomical inaccuracy.
AB - In the absence of duplicate high-dose CT data, it is challenging to restore high-quality images based on deep learning with only low-dose CT (LDCT) data. When different reconstruction algorithms and settings are adopted to prepare high-quality images, LDCT datasets for deep learning can be unpaired. To address this problem, we propose hierarchical deep generative adversarial networks (HD-GANs) for semi-supervised learning with the unpaired datasets. We first cluster each patient's CT images into multiple categories, and then collect the images in the same categories across different patients to build an imageset for denoising. Each imageset is fed into a generative adversarial network that consists of a denoising network and a following classification network. The denoising network efficiently reuses feature maps from the lower layers for end-to-end learning with full-size images. The classifier is trained to distinguish between the denoised images and the high-quality images. Evaluated with a clinical LDCT dataset, the proposed semi-supervised learning approach efficiently reduces the noise level of LDCT images without loss of information, thereby addressing the major shortcomings of IR such as computation time and anatomical inaccuracy.
UR - http://www.scopus.com/inward/record.url?scp=85077880349&partnerID=8YFLogxK
U2 - 10.1109/EMBC.2019.8857572
DO - 10.1109/EMBC.2019.8857572
M3 - Conference contribution
C2 - 31946448
AN - SCOPUS:85077880349
T3 - Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
SP - 2683
EP - 2686
BT - 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019
Y2 - 23 July 2019 through 27 July 2019
ER -