TY - JOUR
T1 - Signal Amplification by Spatial Concentration for Immunoassay on Cellulose Media
AU - Kim, Hyeokjung
AU - Noh, Hyeran
N1 - Publisher Copyright:
© 2023 Wiley-VCH GmbH.
PY - 2024/4/11
Y1 - 2024/4/11
N2 - Immunoassay is one of the most common bioanalytical techniques from lab-based to point-of-care settings. Over time, various approaches have been developed to amplify signals for greater sensitivity. However, the need for effective, versatile, and simple signal amplification methods persists yet. This paper presents a novel signal amplification method for immunoassay that utilizes spatial concentration of a cellulose-based plate possessing sensor transducers, specifically gold nanoparticles. By modifying the dimensions of the plate, the density of nanoparticles increased, resulting in intensified color signals. The coating material, polydopamine, which is utilized to protect the gold nanoparticles. Chemical changes in nanocomposites are characterized using scanning electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. The application of this method to colorimetric quantification demonstrated great consistency across various concentrations of nanoparticles, with better reliability at lower concentration ranges. A model immunoassay is designed to evaluate the analytical performance. As a result, this method successfully corrected a false-negative result with a lowered Kd of 0.509 pmol per zone. This method shows strong signal enhancement capability that can correct false-negative signals in the immunoassays, with potential benefits including versatility, simplicity, low cost, and the ability to operate multiple plates simultaneously.
AB - Immunoassay is one of the most common bioanalytical techniques from lab-based to point-of-care settings. Over time, various approaches have been developed to amplify signals for greater sensitivity. However, the need for effective, versatile, and simple signal amplification methods persists yet. This paper presents a novel signal amplification method for immunoassay that utilizes spatial concentration of a cellulose-based plate possessing sensor transducers, specifically gold nanoparticles. By modifying the dimensions of the plate, the density of nanoparticles increased, resulting in intensified color signals. The coating material, polydopamine, which is utilized to protect the gold nanoparticles. Chemical changes in nanocomposites are characterized using scanning electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. The application of this method to colorimetric quantification demonstrated great consistency across various concentrations of nanoparticles, with better reliability at lower concentration ranges. A model immunoassay is designed to evaluate the analytical performance. As a result, this method successfully corrected a false-negative result with a lowered Kd of 0.509 pmol per zone. This method shows strong signal enhancement capability that can correct false-negative signals in the immunoassays, with potential benefits including versatility, simplicity, low cost, and the ability to operate multiple plates simultaneously.
KW - cellulose
KW - ELISA
KW - immunoassay
KW - lateral flow
KW - shrinkage
UR - https://www.scopus.com/pages/publications/85178123618
U2 - 10.1002/smll.202307556
DO - 10.1002/smll.202307556
M3 - Article
C2 - 38012537
AN - SCOPUS:85178123618
SN - 1613-6810
VL - 20
JO - Small
JF - Small
IS - 15
M1 - 2307556
ER -