Abstract
Energy consumption and environmental pollution are major issues faced by the world. The present study introduces a single solution using SnS2 for these two major global problems. SnS2 nanoparticles and thin films were explored as an adsorbent to remove organic toxic materials (Rhodamine B (RhB)) from water and an alternative to the toxic cadmium sulfide (CdS) buffer for thin-film solar cells, respectively. Primary characterization tools such as X-ray photoelectron spectroscopy (XPS), Raman, X-ray diffraction (XRD), and UV-Vis-NIR spectroscopy were used to analyze the SnS2 nanoparticles and thin films. At a reaction time of 180 min, 0.4 g/L of SnS2 nanoparticles showed the highest adsorption capacity of 85% for RhB (10 ppm), indicating that SnS2 is an appropriate adsorbent. The fabricated Cu(In,Ga)Se2 (CIGS) device with SnS2 as a buffer showed a conversion efficiency (~5.1%) close to that (~7.5%) of a device fabricated with the conventional CdS buffer, suggesting that SnS2 has potential as an alternative buffer.
Original language | English |
---|---|
Article number | 282 |
Journal | Nanomaterials |
Volume | 12 |
Issue number | 2 |
DOIs | |
State | Published - 1 Jan 2022 |
Keywords
- Adsorbent
- Cu(In,Ga)Se
- Dyes
- Nanoparticles
- RhB
- SnS
- Solar cell
- Thin films