Solvent-assisted sulfur vacancy engineering method in MoS2 for a neuromorphic synaptic memristor

Jiyeon Kim, Changik Im, Chan Lee, Jinwoo Hwang, Hyoik Jang, Jae Hak Lee, Minho Jin, Haeyeon Lee, Junyoung Kim, Junho Sung, Youn Sang Kim, Eunho Lee

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

Recently, two-dimensional transition metal dichalcogenides (TMDs) such as molybdenum disulfide (MoS2) have attracted great attention due to their unique properties. To modulate the electronic properties and structure of TMDs, it is crucial to precisely control chalcogenide vacancies and several methods have already been suggested. However, they have several limitations such as plasma damage by ion bombardment. Herein, we introduced a novel solvent-assisted vacancy engineering (SAVE) method to modulate sulfur vacancies in MoS2. Considering polarity and the Hansen solubility parameter (HSP), three solvents were selected. Sulfur vacancies can be modulated by immersing MoS2 in each solvent, supported by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy analyses. The SAVE method can further expand its application in memory devices representing memristive performance and synaptic behaviors. We represented the charge transport mechanism of sulfur vacancy migration in MoS2. The non-destructive, scalable, and novel SAVE method controlling sulfur vacancies is expected to be a guideline for constructing a vacancy engineering system of TMDs.

Original languageEnglish
Pages (from-to)1417-1427
Number of pages11
JournalNanoscale Horizons
Volume8
Issue number10
DOIs
StatePublished - 2 Aug 2023

Fingerprint

Dive into the research topics of 'Solvent-assisted sulfur vacancy engineering method in MoS2 for a neuromorphic synaptic memristor'. Together they form a unique fingerprint.

Cite this