Abstract
Rapid changes in the electrical resistance depending on the phases (amorphous and crystal) are one of the most promising bases for universal memory. Phase-change region is spatially inhomogeneous during memory operation in a unit cell because Joule heat for the phase-change is generated at the interface between the metal and compounds. However, delicate optimization of the electrical and thermal properties at the interface is underexplored compared to the bulk. In this study, we modulate the electrical and thermal conductivities by incorporating oxygen in Ag-In-Sb-Te, superior memory compounds where oxygen is chosen for high accessibility and efficiency for the modulation of conductivity. We further analyze the oxidation and crystallization process at the atomic level. Based on the results, we successfully improve the memory performances such as speed, energy, signal ratio, and reliability simultaneously by inserting the oxygenated layer as an interfacial layer. Our study proves that there is considerable room to optimize memory performance at the interface.
| Original language | English |
|---|---|
| Article number | 153026 |
| Journal | Applied Surface Science |
| Volume | 589 |
| DOIs | |
| State | Published - 1 Jul 2022 |
Keywords
- Interface
- Joule heat
- Phase-change memory
- memory performances
- unit cell operation