SPriorSeg: Fast Road-Object Segmentation using Deep Semantic Prior for Sparse 3D Point Clouds

Ki In Na, Byungjae Park, Jong Hwan Kim

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Detection and classification of road-objects like cars, pedestrians, and cyclists is the first step in autonomous driving. In particular, point-wise object segmentation for 3D point clouds is essential to estimate the precise appearances of the road-objects. In this paper, we propose SPriorSeg, a fast and accurate point-level object segmentation for point clouds by integrating the strengths of deep convolutional auto-encoder and region growing algorithm. Semantic segmentation using the light-weighted convolutional auto-encoder generates semantic prior by labeling a spherical projection image of point clouds pixel-by-pixel with classes of road-objects. The region growing algorithm achieves pixel-wise instance segmentation by taking into account semantic prior and geometric features between neighboring pixels. We build a well-balanced, pixel-level labeled dataset for all classes using 3D bounding boxes and point clouds from the KITTI object dataset. The dataset is employed to train our light-weighted neural network for semantic segmentation and demonstrate the performance of both semantic and instance segmentation of SPriorSeg.

Original languageEnglish
Title of host publication2020 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3928-3933
Number of pages6
ISBN (Electronic)9781728185262
DOIs
StatePublished - 11 Oct 2020
Event2020 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2020 - Toronto, Canada
Duration: 11 Oct 202014 Oct 2020

Publication series

NameConference Proceedings - IEEE International Conference on Systems, Man and Cybernetics
Volume2020-October
ISSN (Print)1062-922X

Conference

Conference2020 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2020
Country/TerritoryCanada
CityToronto
Period11/10/2014/10/20

Fingerprint

Dive into the research topics of 'SPriorSeg: Fast Road-Object Segmentation using Deep Semantic Prior for Sparse 3D Point Clouds'. Together they form a unique fingerprint.

Cite this