Abstract
Structurally stabilized Na3V2(PO4)3/C composite cathode materials with excellent electrochemical performance can be obtained by incorporating functional pillar ions into the structure. As pillar ions, K-ions have a larger ionic radius compared to Na-ions, and play an important role in enlarging the Na-ion diffusion pathway and in increasing the lattice volume by elongating the c-axis, thereby improving the rate performance. Furthermore, since the incorporated K-ions rarely participate in the electrochemical extraction/insertion reactions, they can stabilize the Na3V2(PO4)3 structure by suppressing significant lattice volume changes or structural distortion, even in a wide range of voltage windows accompanying multiple transitions of V ions and phase distortions. We investigated how the K-ion doping level affected the crystal structure and electrochemical properties of Na3V2(PO4)3 cathode materials for Na-ion batteries.
| Original language | English |
|---|---|
| Pages (from-to) | 19623-19632 |
| Number of pages | 10 |
| Journal | Journal of Materials Chemistry A |
| Volume | 2 |
| Issue number | 46 |
| DOIs | |
| State | Published - 14 Dec 2014 |