Surface modification of electrospun nitrogen-doped Ge@C fiber with highly porous NiCo2O4 layer as high-performance lithium-ion battery anode

Ariono Verdianto, Heechul Jung, Sang Ok Kim

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Elemental germanium (Ge) is considered a high-capacity anode material for lithium-ion batteries (LIBs). However, it suffers from severe capacity degradation and inherent material instability owing to inevitable volumetric changes during the alloying/dealloying reactions with lithium. In this study, we report a hierarchical architecture comprising Ge nanoparticles in electrospun carbon fibers (Ge@C) coated with an in situ grown NiCo2O4 (NCO) layer to enhance the structural stability and electrochemical reversibility of Ge. The Ge@C@NCO fibers possess unique features, including well-dispersed Ge in nitrogen-doped porous carbon network that serves as a conductive volumetric buffer. This configuration allows for effective volume accommodation and improved electronic conductivity. Moreover, the porous NCO contributed to enhanced reversible capacity and rapid ionic transfer during electrochemical reactions. As a result, the Ge@C@NCO anode exhibited an ultrahigh specific capacity of 981.7 mAh g−1 and excellent capacity retention over 200 cycles under a current density of 1 A g−1, indicating superior lithium storage properties compared to pure Ge. Additionally, it retained approximately 80 % of initial capacity after 300 cycles even at 5 A g−1, demonstrating fast charging capability. The outstanding performance of this hierarchical structure presents a new path for designing alloying-based anodes for high-energy-density LIBs.

Original languageEnglish
Article number100472
JournalMaterials Today Advances
Volume21
DOIs
StatePublished - Mar 2024

Keywords

  • Electrospinning
  • Germanium
  • Lithium-ion batteries
  • Nitrogen-doped carbon fiber
  • Porous NiCoO
  • Surface modification

Fingerprint

Dive into the research topics of 'Surface modification of electrospun nitrogen-doped Ge@C fiber with highly porous NiCo2O4 layer as high-performance lithium-ion battery anode'. Together they form a unique fingerprint.

Cite this