TY - JOUR
T1 - Syntheses and characterization of wurtzite CoO, rocksalt CoO, and spinel Co3O4 nanocrystals
T2 - Their interconversion and tuning of phase and morphology
AU - Nam, Ki Min
AU - Shim, Jae Ha
AU - Han, Dong Wook
AU - Kwon, Hyuk Sang
AU - Kang, Yong Mook
AU - Li, Yan
AU - Song, Hyunjoon
AU - Seo, Won Seok
AU - Park, Joon T.
PY - 2010/8/10
Y1 - 2010/8/10
N2 - Pure rocksalt (c-CoO) and wurtzite (h-CoO) phases of cobaltous oxide (CoO) have been selectively prepared through thermodynamically and kinetically controlled reactions of a single molecular precursor Co(acac)3 (acac: acetylacetonate), respectively. Changing thermal decomposition conditions of the precursor produces different phases and distinct morphologies of the cobaltous oxides. Hexagonal pyramidal shaped h-CoO nanocrystals have been formed by a flash heating of the reaction mixture (185 °C for 2 h, kinetic control condition), whereas cube shaped c-CoO nanocrystals have been produced by a prolonged heating at a relatively low temperature (130 °C for 12 h, thermodynamic control condition). Addition of o-Dichlorobenzene (o-DCB) to the reaction mixture alters the reaction condition to the thermodynamic control regime by slowing down the decomposition rate of the precursor. Further increase of the concentration of o-DCB in the reaction mixture changes the morphology of product from h-CoO hexagonal pyramids to h-CoO nanorods with various aspect ratios and finally to c-CoO nanocrystals. Air oxidation at 240 °C for 5 h of either h-CoO or c-CoO nanocrystals yields spinel Co3O4 nanocrystals with retention of the original crystal morphology. During the oxidation process, the h-CoO phase has been converted into Co3O 4 via formation of the c-CoO phase, but the c-CoO phase has been directly oxidized to Co3O4. The electrochemical properties of the h-CoO, c-CoO, and spinel Co3O4 nanocrystals toward lithium exhibit characteristic features reflecting their Gibbs free energies. This work allows understanding of the detailed mechanism and energetics of selective formation, phase transformation, morphology control, and electrochemical properties in the closely related nanostructured cobalt oxides.
AB - Pure rocksalt (c-CoO) and wurtzite (h-CoO) phases of cobaltous oxide (CoO) have been selectively prepared through thermodynamically and kinetically controlled reactions of a single molecular precursor Co(acac)3 (acac: acetylacetonate), respectively. Changing thermal decomposition conditions of the precursor produces different phases and distinct morphologies of the cobaltous oxides. Hexagonal pyramidal shaped h-CoO nanocrystals have been formed by a flash heating of the reaction mixture (185 °C for 2 h, kinetic control condition), whereas cube shaped c-CoO nanocrystals have been produced by a prolonged heating at a relatively low temperature (130 °C for 12 h, thermodynamic control condition). Addition of o-Dichlorobenzene (o-DCB) to the reaction mixture alters the reaction condition to the thermodynamic control regime by slowing down the decomposition rate of the precursor. Further increase of the concentration of o-DCB in the reaction mixture changes the morphology of product from h-CoO hexagonal pyramids to h-CoO nanorods with various aspect ratios and finally to c-CoO nanocrystals. Air oxidation at 240 °C for 5 h of either h-CoO or c-CoO nanocrystals yields spinel Co3O4 nanocrystals with retention of the original crystal morphology. During the oxidation process, the h-CoO phase has been converted into Co3O 4 via formation of the c-CoO phase, but the c-CoO phase has been directly oxidized to Co3O4. The electrochemical properties of the h-CoO, c-CoO, and spinel Co3O4 nanocrystals toward lithium exhibit characteristic features reflecting their Gibbs free energies. This work allows understanding of the detailed mechanism and energetics of selective formation, phase transformation, morphology control, and electrochemical properties in the closely related nanostructured cobalt oxides.
UR - http://www.scopus.com/inward/record.url?scp=77955242324&partnerID=8YFLogxK
U2 - 10.1021/cm101138h
DO - 10.1021/cm101138h
M3 - Article
AN - SCOPUS:77955242324
SN - 0897-4756
VL - 22
SP - 4446
EP - 4454
JO - Chemistry of Materials
JF - Chemistry of Materials
IS - 15
ER -