TY - JOUR
T1 - Temporal and spatial distribution of extreme rainfall from tropical storms in the Gulf of Mexico from 1979 to 2021
AU - Song, Jae Yeol
AU - Chung, Eun Sung
N1 - Publisher Copyright:
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
PY - 2024/8
Y1 - 2024/8
N2 - Atlantic tropical cyclones often associate with heavy rainfall, which causes inland- and coastal-flooding in the United States, and the storm-induced rainfall is closely related to its storm scale, movement, and location. For a better performance in flood or risk analysis in a region, understanding the characteristics and distribution of tropical storm (TS) induced extreme rainfall is essential. This study proposes dimensionless rainfall-duration curves for designated four-quartile storms that represents the temporal distribution of TS induced extreme rainfall in the Gulf of Mexico from 1979 to 2021. Our study employs spatiotemporal analysis to compute rainfall while TSs are located overseas and inland from satellite based climate forcing data and hurricane track records, annual maximum approach to define TS induced extreme rainfall events, and designated track types to categorize events based on their trajectories. As a result, extreme rainfall relating to TSs in the Gulf of Mexico are found to be considerably higher in inland than overseas. For inland, majority of the TSs was found to be the 1st- and 2nd-quartile storms. However, the 3rd-quartile storms, which case are rare, were found to have the overall largest amount of rainfall per duration compared to the other quartile storms. As for overseas, more than half of the TSs were found to be the 4th-quartile storm while the 2nd-quartile storm has higher overall rainfall per duration. Spatial analysis shows that Texas, Louisiana, Mississippi, Florida, and South Carolina are determined as high-threatened areas by TS induced extreme rainfall.
AB - Atlantic tropical cyclones often associate with heavy rainfall, which causes inland- and coastal-flooding in the United States, and the storm-induced rainfall is closely related to its storm scale, movement, and location. For a better performance in flood or risk analysis in a region, understanding the characteristics and distribution of tropical storm (TS) induced extreme rainfall is essential. This study proposes dimensionless rainfall-duration curves for designated four-quartile storms that represents the temporal distribution of TS induced extreme rainfall in the Gulf of Mexico from 1979 to 2021. Our study employs spatiotemporal analysis to compute rainfall while TSs are located overseas and inland from satellite based climate forcing data and hurricane track records, annual maximum approach to define TS induced extreme rainfall events, and designated track types to categorize events based on their trajectories. As a result, extreme rainfall relating to TSs in the Gulf of Mexico are found to be considerably higher in inland than overseas. For inland, majority of the TSs was found to be the 1st- and 2nd-quartile storms. However, the 3rd-quartile storms, which case are rare, were found to have the overall largest amount of rainfall per duration compared to the other quartile storms. As for overseas, more than half of the TSs were found to be the 4th-quartile storm while the 2nd-quartile storm has higher overall rainfall per duration. Spatial analysis shows that Texas, Louisiana, Mississippi, Florida, and South Carolina are determined as high-threatened areas by TS induced extreme rainfall.
KW - Extreme rainfall
KW - Quartile storm
KW - Temporal distribution
KW - Tropical storm
UR - http://www.scopus.com/inward/record.url?scp=85194573072&partnerID=8YFLogxK
U2 - 10.1007/s00477-024-02742-y
DO - 10.1007/s00477-024-02742-y
M3 - Article
AN - SCOPUS:85194573072
SN - 1436-3240
VL - 38
SP - 3239
EP - 3255
JO - Stochastic Environmental Research and Risk Assessment
JF - Stochastic Environmental Research and Risk Assessment
IS - 8
ER -