The role of excess attractive particles in the elasticity of high internal phase Pickering emulsions

Junsu Chae, Siyoung Q. Choi, Kyu Han Kim

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

A high internal phase emulsion (HIPE), which has a volume fraction of dispersed phase of over 74%, shows a solid-like property because of concentrated polyhedral droplets. Although many studies have proposed theoretical and empirical models to explain the rheological properties of HIPEs, most of them are only limited to the emulsions stabilized by surfactants. In the case of high internal phase Pickering emulsions (HIPPEs), much greater values of elastic modulus have been reported, compared to those of surfactant-stabilized HIPEs, but so far, there have been no clear explanations for this. In this study, we investigate how colloidal particles attribute to the significantly high elasticity of HIPPEs, specifically considering two different contributions, namely, interfacial rheological properties and bulk rheological properties. Our results reveal that the flocculated structures of colloidal particles that possess a significant elasticity can be interconnected between dispersed droplets. Furthermore, this elastic structure is a crucial factor in the high elasticity of HIPPEs, which is also supported by a simple theoretical model.

Original languageEnglish
Pages (from-to)53-61
Number of pages9
JournalSoft Matter
Volume18
Issue number1
DOIs
StatePublished - 7 Jan 2022

Fingerprint

Dive into the research topics of 'The role of excess attractive particles in the elasticity of high internal phase Pickering emulsions'. Together they form a unique fingerprint.

Cite this