TY - JOUR
T1 - Theoretical approach on the dynamic global buckling response of metallic corrugated core sandwich columns
AU - Lim, Jae Yong
AU - Bart-Smith, Hilary
PY - 2014/10
Y1 - 2014/10
N2 - A theoretical (semi-analytical) approach was proposed to estimate the dynamic in-plane response of corrugated core sandwich columns against suddenly applied loads with a compression rate less than 5 m/s. The model has been constructed so as to effectively include various dynamic effects such as stress wave propagation, material rate dependence and lateral inertia. The practical and theoretical complexities caused from the dynamic phenomena and the established governing equations (e.g. coupled non-uniform axial force distribution) have been resolved by employing Galerkin's method. The proposed approach was validated by comparing the calculations from the theoretical model and Finite Element Method (FEM): the load history and deformation shape of extruded Al6061-T6 corrugated core sandwich columns and bending/brazed SS304 corrugated core sandwich columns. The model successfully yielded the imperfection-sensitive, velocity-dependent dynamic response and appearance of higher buckling modes. In addition, it has been demonstrated that the sandwich columns with periodic cellular metals outperform their weight-equivalents, monolithic solid columns, under dynamic conditions. The proposed approach as an efficient tool to explore the dynamic global buckling response in design space can make preliminary studies of weight minimization for dynamic applications.
AB - A theoretical (semi-analytical) approach was proposed to estimate the dynamic in-plane response of corrugated core sandwich columns against suddenly applied loads with a compression rate less than 5 m/s. The model has been constructed so as to effectively include various dynamic effects such as stress wave propagation, material rate dependence and lateral inertia. The practical and theoretical complexities caused from the dynamic phenomena and the established governing equations (e.g. coupled non-uniform axial force distribution) have been resolved by employing Galerkin's method. The proposed approach was validated by comparing the calculations from the theoretical model and Finite Element Method (FEM): the load history and deformation shape of extruded Al6061-T6 corrugated core sandwich columns and bending/brazed SS304 corrugated core sandwich columns. The model successfully yielded the imperfection-sensitive, velocity-dependent dynamic response and appearance of higher buckling modes. In addition, it has been demonstrated that the sandwich columns with periodic cellular metals outperform their weight-equivalents, monolithic solid columns, under dynamic conditions. The proposed approach as an efficient tool to explore the dynamic global buckling response in design space can make preliminary studies of weight minimization for dynamic applications.
KW - Corrugated core sandwich columns
KW - Dynamic global buckling response
KW - Galerkin's method
KW - Monolithic solid columns
KW - Semi-analytical approach
KW - Stress wave propagation
UR - https://www.scopus.com/pages/publications/84901293877
U2 - 10.1016/j.ijnonlinmec.2014.04.007
DO - 10.1016/j.ijnonlinmec.2014.04.007
M3 - Article
AN - SCOPUS:84901293877
SN - 0020-7462
VL - 65
SP - 14
EP - 31
JO - International Journal of Non-Linear Mechanics
JF - International Journal of Non-Linear Mechanics
ER -