TY - JOUR
T1 - Thermoconductive n-alkane enables ultra-high shape/thermal stability, durability, and ambient thermal energy harvesting
AU - Atinafu, Dimberu G.
AU - Yun, Beom Yeol
AU - Kim, Young Uk
AU - Yang, Sungwoong
AU - Wi, Seunghwan
AU - Kim, Sumin
N1 - Publisher Copyright:
© 2021 Elsevier B.V.
PY - 2021/9/15
Y1 - 2021/9/15
N2 - Thermal energy storage using phase change materials (PCMs) has received significant attention in the field of sustainable energy development. However, extremely low thermal conductivity and seepage issues are two long-standing drawbacks limiting PCM-based applications. In this study, an alternative strategy is used to construct composite PCMs by introducing hybrid functional materials as support and liquid n-alkane as energy storage material through a facile vacuum impregnation method. The hybrid functional material, obtained from a commercially available natural mineral, montmorillonite (Mt), and boron nitride, possesses high specific surface area and physicochemical stability and can endow the n-dodecane (DA) with beneficial characteristics. Hybrid-functional-material-supported DA is suitable for ambient energy harvesting in the form of latent heat, with a 309% growth rate in energy storage capacity compared with that of Mt/DA. The thermal conductivity reached 0.795 W/m·K, which is 2.01 and 5.89 times higher than those of Mt/DA and pristine DA, respectively. In addition, the composite PCMs exhibited ultra-high leakage resistance at up to 120 °C owing to the presence of a favorable interconnected network structure, strong surface tension, and capillary forces. The materials also exhibited high durability after 50 thermal cycles with a high latent heat retention capacity (>98%). Because of such thermal properties, the application scope of composite PCMs can be extended to the development of various human comfort thermal management systems.
AB - Thermal energy storage using phase change materials (PCMs) has received significant attention in the field of sustainable energy development. However, extremely low thermal conductivity and seepage issues are two long-standing drawbacks limiting PCM-based applications. In this study, an alternative strategy is used to construct composite PCMs by introducing hybrid functional materials as support and liquid n-alkane as energy storage material through a facile vacuum impregnation method. The hybrid functional material, obtained from a commercially available natural mineral, montmorillonite (Mt), and boron nitride, possesses high specific surface area and physicochemical stability and can endow the n-dodecane (DA) with beneficial characteristics. Hybrid-functional-material-supported DA is suitable for ambient energy harvesting in the form of latent heat, with a 309% growth rate in energy storage capacity compared with that of Mt/DA. The thermal conductivity reached 0.795 W/m·K, which is 2.01 and 5.89 times higher than those of Mt/DA and pristine DA, respectively. In addition, the composite PCMs exhibited ultra-high leakage resistance at up to 120 °C owing to the presence of a favorable interconnected network structure, strong surface tension, and capillary forces. The materials also exhibited high durability after 50 thermal cycles with a high latent heat retention capacity (>98%). Because of such thermal properties, the application scope of composite PCMs can be extended to the development of various human comfort thermal management systems.
KW - Durability
KW - Hybrid functional material
KW - N-alkane
KW - Thermal energy harvesting
UR - http://www.scopus.com/inward/record.url?scp=85107146876&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2021.130374
DO - 10.1016/j.cej.2021.130374
M3 - Article
AN - SCOPUS:85107146876
SN - 1385-8947
VL - 420
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
M1 - 130374
ER -