Abstract
In this paper, we consider a transmit power allocation problem for secure transmission in multi-hop decode-and-forward (DF) full-duplex relay (FDR) networks, where multiple FDRs are located at each hop and perform cooperative beamforming to null out the signal at multiple eavesdroppers. For a perfect self-interference cancellation (PSIC) case, where the self-interference signal at each FDR is completely canceled, we derive an optimal power allocation (OPA) strategy using the Karush-Kuhn-Tucker (KKT) conditions to maximize the achievable secrecy rate under an overall transmit power constraint. In the case where residual self-interferences exist owing to imperfect self-interference cancellation (ISIC), we also propose a transmit power allocation scheme using the geometric programming (GP) method. Numerical results are presented to verify the secrecy rate performance of the proposed power allocation schemes.
Original language | English |
---|---|
Article number | 1726 |
Journal | Sensors |
Volume | 16 |
Issue number | 10 |
DOIs | |
State | Published - 17 Oct 2016 |
Keywords
- Full-duplex relay
- Physical layer security
- Power allocation
- Relay networks
- Secrecy rate